An Active Introduction to
Discrete Mathematics and Algorithms

Charles A. Cusack

cusack@hope.edu

David A. Santos

Version 2.5
December 21, 2015


mailto:cusack@hope.edu

i



iii

Copyright © 2015 Charles A. Cusack. Permission is granted to copy, distribute and /or
modify this document under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.

Copyright (© 2007 David Anthony Santos. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation Li-
cense, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled “GNU Free Documentation License”.

History

e An Active Introduction to Discrete Mathematics and Algorithms, 2015, Charles A. Cusack.
Minor revisions. Algorithm Analysis chapter had major revisions.

e An Active Introduction to Discrete Mathematics and Algorithms, 2014, Charles A. Cusack.
This is a significant revision of the 2013 version (thus the slight change in title).

e An Introduction to Discrete Mathematics and Algorithms, 2013, Charles A. Cusack. This
document draws some content from each of the following.
— Discrete Mathematics Notes, 2008, David A. Santos.
— More Discrete Mathematics, 2007, David A. Santos.
Number Theory for Mathematical Contests, 2007, David A. Santos.
— Linear Algebra Notes, 2008, David A. Santos.

— Precalculus, An Honours Course, 2008, David Santos.

These documents are all available from http://www.opensourcemath.org/books/santos/,
but the site appears not to be consistently available.


http://www.opensourcemath.org/books/santos/

iv

Contents

Preface vii

How to use this book ix

1 Motivation 1
1.1 Some Problems . . .. ... ...... 2

2 Proof Methods 7
2.1 Direct Proofs . .. ... ... ... .. 7
2.2 Implication and Its Friends . . . . .. 16
2.3 Proof by Contradiction . . . . . .. .. 20
2.4 Proof by Contraposition . . . . .. .. 29
2.5 Other Proof Techniques . . .. .. .. 31
2.6 If and Only If Proofs . . . . ... ... 33
2.7 Common Errors in Proofs . . . .. .. 35
2.8 More Practice . . . . . ... ... ... 38
29 Problems . ... ............ 42

3 Programming Fundamentals and Algo-

rithms 45
3.1 Algorithms . . ... ... ....... 45

3.2 The mod operator and Integer Division 49
3.3 If-then-else Statements . . .. . . . 56
34 Theforloop . .. .. ... ...... 58
35 Arrays . .. ... 61
3.6 The whileloop . . ... .. ... ... 65
3.7 Problems . ............... 68

4 Logic 71
4.1 Propositional Logic . . . . . ... ... 71
4.1.1 Compound Propositions . . . . 73

4.1.2 Truth Tables . ... ... ... 80

4.1.3 Precedence Rules . . . . . . .. 82

4.2 Propositional Equivalence . . . . . .. 84
4.3 Predicates and Quantifiers . . . . . . . 96
4.4 Normal Forms. . . .. ... .. .... 105
4.5 Bitwise Operations . . . . . ... ... 108
4.6 Problems ... ............. 111

5 Sets, Functions, and Relations 117
5.1 Sets . . . ... 117
5.2 Set Operations . . .. ......... 123
5.3 Functions . . ... .. ... ... ... 134
5.4 Partitions and Equivalence Relations . 145
55 Problems ... ............. 159

6 Sequences and Summations 163
6.1 Sequences . .. ............. 163

6.2 Sums and Products . . . ... ... .. 176
6.3 Problems . .. ............. 192

7 Algorithm Analysis

7.1 Asymptotic Notation . . . . . .. ...
7.1.1 The Notations . ... ... ..
7.1.2 Properties of the Notations
7.1.3 Proofs using the definitions . .
7.1.4 Proofs using limits . . . . . ..

7.2 Common Growth Rates . .. ... ..

7.3 Algorithm Analysis . . . . .. ... ..
7.3.1 Common Time Complexities .

74 Problems . ............ ...

253

8 Recursion, Recurrences, and Mathe-

matical Induction

8.1 Mathematical Induction . . . .. . ..
81.1 TheBasics .. .........
8.1.2 Equalities/Inequalities . . . . .
8.1.3 Variations . . . ... ... ...
8.1.4 Strong Induction . . . ... ..
8.1.5 Induction Errors . . . ... ..
8.1.6 Summary/Tips . . .. ... ..

82 Recursion . ... .. ..........

8.3 Solving Recurrence Relations . . . . .
8.3.1 Substitution Method . . . . . .
8.3.2 Iteration Method . . . . . . ..
8.3.3 Master Theorem . . . ... ..
8.3.4 Linear Recurrence Relations . .

8.4 Analyzing Recursive Algorithms
8.4.1 Analyzing Quicksort . . . . . .

85 Problems .. .. ... .........

9 Counting
9.1 The Multiplication and Sum Rules . .
9.2 Pigeonhole Principle . . . .. .. ...
9.3 Permutations and Combinations
9.3.1 Permutations without Repeti-
tions . . . ... oL
9.3.2 Permutations with Repetitions
9.3.3 Combinations without Repeti-
tions . . . ... oL
9.3.4 Combinations with Repetitions
9.4 Binomial Theorem . . .. ... .. ..
9.5 Inclusion-Exclusion . . . . .. ... ..
9.6 Problems . ... ............

10 Graph Theory
10.1 Types of Graphs . . . ... ... ...
10.2 Graph Terminology . . . . . . . .. ..
10.3 Some Special Graphs . . . . ... ...
10.4 Handshaking Lemma . . . . . . .. ..
10.5 Graph Representation . .. ... ...
10.6 Problem Solving with Graphs . . . . .
10.7 Traversability . . . . . .. .. .. ...

263

334
337

341
347
351



10.8 Planarity . ... ... ... .. .... 385 | GNU Free Documentation License 437
10.9 Problems . ... ... ... .. .... 387

11 Selected Solutions 389 | Index 441



vi



Preface

This book is an attempt to present some of the most important discrete mathematics concepts to
computer science students in the context of algorithms. I wrote it for use as a textbook for half
of a course on discrete mathematics and algorithms.

Some of the material is drawn from several open-source books by David Santos. Other material
is from handouts I have written and used over the years. I have extensively edited the material
from both sources, both for clarity and to emphasize the connections between the material and
algorithms where possible. I have also added a significant amount of new material. The format
of the material is also significantly different than it was in the original sources.

I should mention that I never met David Santos, who apparently died in 2011. I stumbled
upon his books in the summer of 2013 when [ was searching for a discrete mathematics book to
use in a new course. When I discovered that I could adapt his material for my own use, I decided
to do so. Since clearly he has no knowledge of this book, he bears no responsibility for any of the
edited content. Any errors or omissions are therefore mine.

This is still a work in progress, so I appreciate any feedback you have. Please send any typos,
formatting errors, other errors, suggestions, etc., to cusack@hope.edu.

I would like to thank the following people for submitting feedback/errata (listed in no par-
ticular order): Dan Zingaro, Mike Jipping, Steve Ratering, Victoria Gonda, Nathan Vance, Cole
Watson, Kalli Crandell, John Dood, Coty Franklin, Kyle Magnuson, and Katie Brudos.

Charles A. Cusack
July, 2014
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How to use this book

As the title of the book indicates, this is not a book that is just to be read. It was written so
that the reader interacts with the material. If you attempt to just read what is written and take
no part in the exercises that are embedded throughout, you will likely get very little out of it.
Learning needs to be active, not passive. The more active you are as you ‘read’ the book, the
more you will get out of it. That will translate to better learning. And it will also translate to a
higher grade. So whether you are motivated by learning (which is my hope) or merely by getting
a certain grade, your path will be the same—use this book as described below.

The content is presented in the following manner. First, concepts and definitions are given—
generally one at a time. Then one or more examples that illustrate the concept/definition will
be given. After that you will find one or more exercises of various kinds. This is where this
book differs from most. Instead of piling on more examples that you merely read and think you
understand, you will be asked to solve some for yourself so that you can be more confident that
you really do understand.

Some of the exercises are just called Fzercises. They are very similar to the examples, except
that you have to provide the solution. There are also Fill in the details which provide part of
the solution, but ask you to provide some of the details. The point of these is to help you think
about some of the finer details that you might otherwise miss. There are also Questions of various
kinds that get you thinking about the concepts. Finally, there are Fvaluate exercises. These ask
you to look at solutions written by others and determine whether or not they are correct. More
precisely, your goal is to try to find as many errors in the solutions as you can. Usually there will
be one or more errors in each solution, but occasionally a correct solution will be given, so pay
careful attention to every detail. The point of these exercises is to help you see mistakes before
you make them. Many of these exercises are based on solutions from previous students, so they
often represent the common mistakes students make. Hopefully if you see someone else make
these mistakes, you will be less likely to make them yourself.

The point of the exercises is to get you thinking about and interacting with the material. As
you encounter these, you should write your solution in the space provided. After you have written
your solution, you should check your answer with the solution provided. You will get the most out
of them if you first do your best to give a complete solution on your own, and then always check
your solution with the one provided to make sure you did it correctly. If yours is significantly
different, make sure you determine whether or not the differences are just a matter of choice or if
there is something wrong with your solution.

If you get stuck on an exercise, you should re-read the previous material (definitions, examples,
etc.) and see if that helps. Then give it a little more thought. For Fill in the details questions,
sometimes reading what is past a blank will help you figure out what to put there. If you get
really stuck on an exercise, look up the solution and make sure you fully understand it. But don’t
jump to the solution too quickly or too often without giving an honest attempt at solving the
exercise yourself. When you do end up looking up a solution, you should always try to rewrite
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it in the space provided in your own words. You should not just copy it word for word. You
won’t learn as much if you do that. Instead, do your best to fully understand the solution. Then,
without looking at the solution, try to re-solve the problem and write your solution in the space
provided. Then check the solution again to make sure you got it right.

It is highly recommended that you act as your own grader when you check your solutions.
If your solution is correct, put a big check mark in the margin. If there are just a few errors,
use a different colored writing utensil to mark and fix your errors. If your solution is way off,
cross it out (just put a big ‘X’ through it) and write out your second attempt, using a separate
sheet of paper if necessary. If you couldn’t get very far without reading the solution, you should
somehow indicate that. So that you can track your errors, I highly recommend crossing out
incorrect solutions (or portions of solutions) instead of erasing them. Doing this will also allow
you to look back and determine how well you did as you were working through each chapter. It
may also help you determine how to spend your time as you study for exams. This whole process
will help you become better at evaluating your own work. This is important because you should
be confident in your answers, but only when they are correct. Grading yourself will help you gain
confidence when you are correct and help you quickly realize when you are not correct so that you
do not become confident about the wrong things. Another reason that grading your solutions is
important is so that when you go back to re-read any portion of the book, you will know whether
or not what you wrote was correct.

It is important that you read the solutions to the exercises after you attempt them, even if
you think your solution is correct. The solutions often provide further insight into the material
and should be regarded as part of any reading assignment given.

Make sure you read carefully. When you come upon an Ewvaluate exercise, do not mistake it
for an example. Doing so might lead you down the wrong path. Never consider the content of an
Evaluate exercise to be correct unless you have verified with the solution that it is really correct.
To be safe, when re-reading, always assume that the FEvaluate exercises are incorrect, and never
use them as a model for your own problem solving. To help you, we have tried to differentiate
these from other example and exercise types by using a different font.

Finally, there is an expectation that you are able to solve every exercise on your own. (Note
that I am talking about the exercises embedded into the chapters, not the homework problems
at the end of each chapter.) If there are exercises that you are unable to complete, you need to
get them cleared up immediately. This might mean asking about them in class, going to see the
professor or a teaching assistant, and/or going to a help center/tutor. Whatever it takes, make
sure you have a clear understanding of how to solve all of them.
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Motivation

The purpose of a discrete mathematics course in the computer science curriculum is to give
students a foundation in some of the mathematical concepts that are foundational to computer
science. By “foundational,” we mean both that the field of computer science was built upon (some
of) them and that they are used to varying degrees in the study of the more advanced topics in
computer science.

Computer science students sometimes complain about taking a discrete mathematics course.
They do not understand the relevance of the material to the rest of the computer science curricu-
lum or to their future career. This can lead to lack of motivation. They also perceive the material
to be difficult.

To be honest, some of the topics are difficult. But the majority of the material is very
accessible to most students. One problem is that learning discrete mathematics takes effort, and
when something doesn’t sink in instantly, some students give up too quickly. The perceived
difficulty together with a lack of motivation can lead to lack of effort, which almost always leads
to failure. Even when students expend effort to learn, they can let their perceptions get the
best of them. If someone believes something is hard or that they can’t do it, it often leads to
self-fulfilling prophecy. This is perhaps human nature. On the other hand, if someone believes
that they can learn the material and solve the problems, chances are they will. The bottom line
is that a positive attitude can go a long way.

This book was written in order to ensure that the student has to expend effort while reading it.
The idea is that if you are allowed to simply read but not required to interact with the material,
you can easily read a chapter and get nothing out. For instance, your brain can go on ‘autopilot’
when something doesn’t sink in and you might get nothing out of the remainder of your time
reading. By requiring you to solve problems and answer questions as you read, your brain is
forced to stay engaged with the material. In addition, when you incorrectly solve a problem, you
know immediately, giving you a chance to figure out what the mistake was and correct it before
moving on to the next topic. When you correctly solve a problem, your confidence increases. We
strongly believe that this feature will go a long way to help you more quickly and thoroughly
learn the material, assuming you use the book as instructed.

What about the problem of relevance? In other words, what is the connection between discrete
mathematics and other computer science topics? There are several reasons that this connection
is unclear to students. First, we don’t always do a very good job of making the connection clear.
We teach a certain set of topics because it is the set of topics that has always been taught in such
a course. We don’t always think about the connection ourselves, and it is easy to forget that this
connection is incredibly important to students. Without it, students can suffer from a lack of
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motivation to learn the material.

The second reason the connection is unclear is because one of the goals of such a course is
simply to help students to be able to think mathematically. As they continue in their education
and career, they will most certainly use some of the concepts they learn, yet they may be totally
unaware of the fact that some of their thoughts and ideas are based on what they learned in a
discrete mathematics course. Thus, although the students gain a benefit from the course, it is
essentially impossible to convince them of this during the course.

The third reason that the connection is unclear is that given the time constraints, it is impos-
sible to provide all of the foundational mathematics that is relevant to the advanced computer
science courses and make the connection to those advanced topics clear. Making these connec-
tions would require an in-depth discussions of the advanced topics. The connections are generally
made, either implicitly or explicitly, in the courses in which the material is needed.

This book attempts to address this problem by making connections to one set of advanced
topics—the design and analysis of algorithms. This is an ideal application of the discrete math-
ematics topics since many of them are used in the design and analysis of algorithms. We also
do not have to go out of our way too far to provide the necessary background, as we would if
we attempted to make connections to topics such as networking, operating systems, architecture,
artificial intelligence, database, or any number of other advanced topics. As already mentioned,
the necessary connections to those topics will be made when you take courses that focus on those
topics.

The goal of the rest of this chapter is to further motivate you to want to learn the topics that
will be presented in this book. We hope that after reading it you will be more motivated. For
some students, the topics are interesting enough on their own, whether or not they can be applied
elsewhere. For others, this is not the case. One way or another, you must find motivation to learn
this material.

1.1 Some Problems

In this section we present a number of problems for you to attempt to solve. You should make an
honest attempt to solve each. We suspect that most readers will be able to solve at most a few
of them, and even then will probably not use the most straightforward techniques. On the other
hand, after you have finished this book you should be able to solve most, if not all of them, with
little difficulty.

There are two main reasons we present these problems to you now. First, we hope they help
you gauge your learning. That is, we hope that you do experience difficulty trying to to solve
them now, but that when you revisit them later, they will seem much easier. Second, we hope
they provide some motivation for you to learn the content. Although all of these problems may
not interest you, we hope that you are intrigued by at least some of them.

Problem A: The following algorithm supposedly computes the sum of the first n integers. Does
it work properly? If it does not work, explain the problem and fix it.

sumiToN(int n) {
return n + sumlToN(n-1);

}

Problem B: The Mega Millions lottery involves picking five different numbers from 1 to 56, and
one number from 1 to 46. I purchased a ticket last week and was surprised when none of my
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six numbers matched. Should I have been surprised? What are the chances that a randomly
selected ticket will match none of the numbers?

Problem C: I programmed an algorithm recently to solve an interesting problem. The input is
an array of size n. When n = 1, it took 1 second to run. When n = 2, it took 7 seconds.
When n = 3, it took 19 seconds. When n = 4, it took 43 seconds. Assume this pattern
continues.

(a) How large of an array can I run the algorithm on in less than 24 hours?

(b) How large can n be if I can wait a year for the answer?

Problem D: Is the following a reasonable implementation of the QUICKSORT algorithms? In
other words, is it correct, and is it efficient? (Notice that the only difference between this
and the standard algorithm is that this one is implemented on a LinkedList rather than
an array.)

Quicksort(LinkedList A,int 1,int r) {
if(r > 1) {
int p = RPartition(A,l,r);
Quicksort(A,l,p-1);
Quicksort(A,p+l,r);

}

int RPartition(LinkedList A,int 1,int r) {
int piv=1+(rand () %(r-1+1));
swap(A,l,piv);
int i = 1+1;
int j = r;
while (1) {
while (A.get(i) <= A.get(l) && i<r)
i++;
while (A.get(j) >= A.get(1l) && j>1)
j=—=s
if (i >= j) {
swap(A,j,1);
return j;
} else {
swap(A,i,j);
}

}

void swap(LinkedList A, index i, index j) {
int temp = A.get(i);
A.set(i,A.get(j));
A.set(j,temp);

}

Problem E: I have an algorithm that takes two inputs, n and m. The algorithm treats n
differently when it is less than zero, between zero and 10, and greater than 10. It treats m
differently based on whether or not it is even. I want to write some test code to make sure
the algorithm works properly for all possible inputs. What pairs (n,m) should I test? Do
these tests guarantee correctness? Explain.
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Problem F: Consider the stoogeSort algorithm given here:

void stoogeSort(int[] A,int L,int R){
if (R<=L) { // Array has at most one element so it is sorted
return;

}

if CA[RI<A[L]) {
int temp = A[L]; // Swap first and last element
A[L] = A[R]; // 1if they are out of order
A[R] = temp;

}

if (R-L>1){ // If the list has at least 3 elements
int third=(R-L+1)/3;
stoogeSort(A,L,R-third); // Sort first two-thirds
stoogeSort(A,L+third,R); // Sort last two-thirds
stoogeSort(A,L,R-third); // Sort first two-thirds again

}

(a) Does stoogeSort correctly sort an array of integers?

(b) Is stoogeSort a good sorting algorithm? Specifically, how long does it take, and how
does it compare to other sorting algorithms?

Problem G: In how many ways may we write the number 19 as the sum of three positive integer
summands? Here order counts, so, for example, 1 + 17 4+ 1 is to be regarded different from
17+1+4+1.

Problem H: Can the following code be simplified? If so, give equivalent code that is as simple
as possible.

if ((!'x.size() <=0 && x.get(0) !'= 11) || x.size() > 0)
{
if (1 (x.get(0)==11 && (x.size() > 13 || x.size() < 13))
&& (x.size() > 0 || x.size() == 13))
{
//do something
}

}

Problem I: A cryptosystem was recently proposed. One of the parameters of the cryptosystem
is a nonnegative integer n, the meaning of which is unimportant here. What is important
is that someone has proven that the system is insecure for a given n if there is more than
one integer m such that 2-m <n <2-(m+1).

(a) For what value(s) of n, if any, can you prove or disprove that there is more than one
integer m such that 2-m <n <2-(m+1)?

(b) Given your answer to (a), does this prove that the cryptosystem is either secure or
insecure? Explain.

Problem J: A certain algorithm takes a positive integer, n, as input. The first thing the algo-
rithm does is set n = n mod 5. It then uses the value of n to do further computations. One
friend claims that you can fully test the algorithm using just the inputs 1, 2, 3, 4, and 5.
Another friend claims that the inputs 29, 17, 38, 55, and 6 will work just as well. A third
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friend responds with “then why not just use 50, 55, 60, 65, and 70?7 Those should work just
as well as your stupid lists.” A fourth friend claims that you need many more test cases to
be certain. A fifth friend says that you can never be certain no matter how many test cases
you use. Which friend or friends is correct? Explain.

Problem K: Write an algorithm to swap two integers without using any extra storage. (That
is, you can’t use any temporary variables.)

Problem L: Recall the Fibonacci sequence, defined by the recurrence relation

0 if n=0
fa=11 if n=1
foo1+ fanee ifn>1.

Sof2:17f3:27f4:37f5:57f6:876tc'

(a) One friend claims that the following algorithm is an elegant and efficient way to com-
pute f.
int Fibonacci(int n) {
if(n <= 1) {
return (n) ;
} else {
return(Fibonacci(n-1)+Fibonacci(n-2));
}
}

Is he right? Explain.

(b) Another friend claims that he has an algorithm that computes f,, that takes constant
time—that is, no matter how large n is, it always takes the same amount of time to
computer f,. Is it possible that he has such an algorithm? Explain.

Problem M: You are at a party with some friends and one of them claims “I just did a quick
count, and it turns out that at this party, there are an odd number of people who have
shaken hands with an odd number of other people.” Can you prove or disprove that this
friend is correct?

Problem N: You need to settle an argument between your boss (who can fire you) and your
professor (who can fail you). They are trying to decide who to invite to the Young Accoun-
tants Volleyball League. They want to invite freshmen who are studying accounting and
are over 6 feet tall. They have a list of everyone they could potentially invite.

1. Your boss says they should make a list of all freshmen, a list of all accounting majors,
and a list of everyone over 6 feet tall. They should then combine the lists (removing
duplicates) and invite those on the combined list.

2. Your professor says they should make a list of everyone who is not a freshman, a list
of anyone who does not do accounting, and a list of everyone who is 6 feet tall or less.
They should make a fourth list that contains everyone who is on all three of the prior
lists. Finally, they should remove from the original list everyone on this fourth list,
and invite the remaining students.

Who is correct? Explain.
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Chapter 2

Proof Methods

The ability to write proofs is important to computer scientists for a variety of reasons. Proofs
are particularly relevant to the study of algorithms. When you write an algorithm it is important
that the algorithm performs as expected, both in terms of producing the correct answer and doing
so quickly. That is, proofs are necessary in algorithm correctness and algorithm analysis.

In this chapter we will introduce you to the basics of mathematical proofs. Along the way
we will review some mathematical concepts/definitions you have probably already seen, and in-
troduce you to some new ones that we will find useful as we proceed. We will continue to write
proofs and learn more advanced proof techniques as the book continues.

2.1 Direct Proofs

A direct proof is one that follows from the definitions. Facts previously learned help many a time
when writing a direct proof. We will begin by seeing some direct proofs about something you
should already be very familiar with: even and odd integers.

Definition 2.1. Recall that
e an even integer is one of the form 2k, where k is an integer.

e an odd integer is one of the form 2k + 1 where k is an integer.

Example 2.2. Use the definition of even to prove that the sum of two even integers is even.

Proof: If x and y are even, then x = 2a and y = 2b for some integers a and b.
Then x + y = 2a + 2b = 2(a + b), which is even since a + b is an integer. O

Example 2.3. Use the definitions of even and odd to prove that the sum of an even integer
and an odd integer is odd.

Proof: Let a be an even integer and b be an odd integer. Then a = 2f and
b =2g+ 1 for some integers f and g. Thena+b=2f+ (29 +1) =2(f +g) + 1.
Since f + g is an integer, a + b is an odd integer. O
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Note: The next example is the first of many Fill in the details exercises in which you need
to supply some of the details. After you have filled in the blanks, compare your answers with
the solutions. The answers are given with semicolons (;) separating the blanks.

*F'ill in the details 2.4. Use the definitions of even and odd to prove that the sum of two
odd integers is even.

Proof: If x and y are odd, then x = 2c+ 1 and y = for some

integers c and d. Then x +y =2c+1+2d+1=2(c+d+1). Now

is an integer, so 2(c+d+ 1) is an integer. O

Note: Did you notice the x in the heading of the previous example? This indicates that a
solution is provided. If you are reading the PDF file, clicking on the x will take you to the
solution. Clicking on the number in the solution will take you back.

Example 2.5. Use the definitions of even and odd to prove that the product of two odd
integers is odd.

Proof: Let a and b be odd integers. Then ¢ = 2l + 1 and b = 2m + 1 for some
integers [ and m. Then a-b = (21+1)(2m+1) = 4mi+2{4+2m+1 = 2(2mi+I+m)+1
which is odd since 2ml + m + [ is an integer. O

xF'ill in the details 2.6. Use the definitions of even and odd to prove that the product of
an even integer and an odd integer is even.

Proof: Let a be an even integer and b be an odd integer. Then a =

and b = for . Given that, we can see that
a-b=(2n)20+1) = . Since is an
integer, a - b is . O

These examples may seem somewhat ridiculous since they are proving such obvious facts.
However, keep in mind that our goal is to learn techniques for writing proofs. As we proceed the
proofs will become more complicated, but we will continue to follow the same basic techniques
we are using here. In other words, the fact that we are proving facts about even and odd integers
is not at all important. What is important are the techniques we are learning in the process.

You may be asking yourself “why are we wasting our time proving such obvious results”? If
so, ask yourself this: Would you rather be asked to prove more complicated things right away?
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Think about how you learned to read and write. You started by reading books that only
had a few simple words. As you progressed, the books and the words in them got longer. The
vocabulary increased. You encountered increasingly complex sentence and paragraph structures.
The same is true when you learned to write. You began by writing the letters of the alphabet.
Then you learned to write words, followed by sentences, paragraphs, and eventually essays.

Learning to read and write proofs follows the same procedure. In order to know how to write
correct proofs you first need to see some examples of them. But you need to go beyond just
seeing them—you need to understand them. That is the goal of examples like the previous one.
Your brain needs to be engaged with the material as you work through the book. You must work
through all of the examples in order to get the most out of this book.

Note: Next you will see the first of many Exercises. These give you an opportunity to solve
a problem from start to finish and then check your answer with the solution provided. It is
important that you try each of these on your own before looking at the solution. You will not
get as much out of the book if you skip these or jump straight to the answer without trying
them yourself.

*Exercise 2.7. Use the definition of even to prove that the product of two even integers is
even.

Proof:

Note: The next example is an Evaluate example. These examples give a problem and then
provide one or more solutions to the problem based on previous student solutions. Your job
is to evaluate each solution by finding any mistakes. Mistakes include not only incorrect
algebra and logic, but also unclear presentation, skipped steps, incorrect assumptions, over-
simplification, etc. When you come across these examples you should write down every error
you can find. Once you are pretty sure you know all of the problems (if there are any), compare
your evaluation to the one given in the solutions.
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xEvaluate 2.8. Evaluate the following proof that supposedly uses the definition of odd to
prove that the product of two odd integers is odd.

Proo$: By definition of odd numrers, let a Be an odd intecer 2n +|
let 8 Be an odd intecer 2@+ Then (2ZNn+N2a+D =d4na+2n+] =
2(2na+N =+l Since 2na-tl is an inteaer, 2(2na=+N—+l is an odd intecer
By definition of odd. O

Evaluation

Sometimes students get frustrated because they think that too many details are required in
a proof. Why are mathematicians such sticklers on the details? The next example is the first of
many that will try to demonstrate why the seemingly little details matter.

Note: The Question examples are similar to the Evaluate ones except that they ask a

specific question. Write down your answer in the space provided and then compare your
answer with the one in the solutions.

*Question 2.9. What is wrong with the following “proof” that the sum of an even and an
odd number is even?

Proo$: Let a = 2n Be an even intecer and B = 2m +| Be an odd
intecer. Then a4+ =2n+2m+1 =2n+m+1/2). Since we wrote

a-+8 as a multiple of 2, it is even. Therefore the sum Of an even and
an 0odd Nnumeer is even O

Answer

We will find the following definitions useful throughout the book.

Definition 2.10. Let b and a be integers with a # 0. We say that b is divisible by a
if there exists an integer ¢ such that b = ac. If b is divisible by a, we also say that b is a

multiple of a, a is a factor or divisor of b, and that a divides b, written as alb. If a does
not divide b, we write a 1 b.

Example 2.11. Since 6 = 2-3, 2|6, and 3|6. But 4 1 6 since we cannot write 6 = 4 - ¢ for any
integer c.
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Example 2.12. Prove that the product of two even integers is divisible by 4.

Proof: Let 2h and 2k be even integers. Then (2h)(2k) = 4(hk). Since hk is an
integer, 4(hk) is divisible by 4. O

*Fill in the details 2.13. Prove that if z is an integer and 7 divides 3z + 2, then 7 also
divides 152% — 11z — 14.

Proof: Since 7 divides 3z + 2, we know that 3z + 2 = T7a, where a is

. Notice that

1522 — 11z — 14 = ( )( )

Therefore . U

Example 2.14. Let a and b be integers such that a|b and bla. Prove that either a = b or
a = —b.

Proof: If alb, we can write b = ac for some integer c¢. Similarly, if b|a, we can
write a = bd for some integer d. Then we can write b = ac = (bd)c. Dividing both
sides by b (which is legal, since bla implies b # 0), we can see that ¢d = 1. Since
¢ and d are integers, we know that either c =d =1 or ¢ = d = —1. In the first
case, we have that a = b, and in the second case, we have that a = —b. O

xEvaluate 2.15. Prove that if n is an integer, then n® — n is divisible by 6.

Proos: We have N3 —n = (n —Dn(n 4D, the product of three con-
secutive intecers. Among three consecutive intecers at least one
is even and exactly one is divisiele By 3. Since 2 and 3 do not have
common factors, b divides the @uantity (n —Dn(n+D, and so N2 —n is
divisigle By b. O

Evaluation

Definition 2.16. A positive integer p > 1 is prime if its only positive factors are 1 and p.
A positive integer ¢ > 1 which is not prime is said to be composite.
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xEvaluate 2.17. Prove or disprove that if a is a positive even integer, then it is composite.

Proo$: Let a Be an even numeer. By definition of even, a = 2k for
some intecer k. Since a > O, clearly k > O. Since a has at least two
factors, 2 and k, 3 is compOsite. d

Evaluation

Note: Notice that according to the definitions given above, 1 is neither prime nor composite.
This is one of the many things that makes 1 special.

xExercise 2.18. Prove that 2 is the only even prime number.
(Hint: Assume a is an even number other than 2 and prove that a is composite.)

Proof

*Question 2.19. Did you notice that the proof in the solution to the previous exercise (you
read it, right?) did not consider the case of 0 or negative even numbers. Was that O.K.?
Explain why or why not.

Answer

Definition 2.20. For a non-negative integer n, the quantity n! (read “n factorial”) is
defined as follows. 0! =1 and if n > 0 then n! is the product of all the integers from 1 to n
inclusive:

nl=1-2---n.

Example 2.21. 3!=1-2-3=6,and 5!=1-2-3-4-5 = 120.
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Example 2.22. Prove that if n > 0, then n! < n".
Proof: Since1<n,2<mn,---,and (n —1) < n, it is easy to see that

nl = 1-2-3-..n

= n"

13

xEvaluate 2.23. Prove that if n > 4 is composite, then n divides (n — 1)!.

Proof: Since N is composite, N = ar £Or some intecers | < a < n—| and
| <& <n—| Bydefinition of factorial, a[(n —Nland &8[(n — D! Therefore
N = a& divides (n — D! O

Evaluation

Since the previous proof wasn’t correct, let’s fix it.

Example 2.24. Prove that if n > 4 is composite, then n divides (n — 1)!.

Proof: If n is not a perfect square, then we can write n = ab for some integers
aand bwithl <a<b<n-—1. Thus,(n—1)!'=1---a---b---(n—1). Since a
and b are distinct numbers on the factor list, n = ab is clearly a factor of (n —1)!.

If n is a perfect square, then n = a? for some integer 2 < a < n — 1. Since a > 2,
2a < a®> =n. Thus, 2a < n,so (n—1)!'=1---a---2a--- (n—1). Then a(2a) = 2n
is a factor of (n — 1)!, which means that n is as well. O

*Question 2.25. Why was it O.K. to assume 1 < a < b <n — 1 in the previous proof?

Answer

*Question 2.26. In the second part of the previous proof, why could we say that a > 27

Answer
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Example 2.27. Prove the Arithmetic Mean-Geometric Mean Inequality, which states that
for all non-negative real numbers z and y,

r+y

VI < =

Proof: Since z and y are non-negative, /= and ,/y are real numbers, so \/z—,/y
is a real number. Since the square of any real number is greater than or equal to
0 we have

(VT v/5)* 2 0.
Expanding (recall the FOIL method?) we get
T — 2/xy+1y > 0.

Adding 2,/zy to both sides and dividing by 2, we get

r+y
>
5 = Ty,

yielding the result. U

The previous example illustrates the creative part of writing proofs. The proof started out
considering \/x — /3, which doesn’t seem to be related to what we wanted to prove. But hopefully
after you read the entire proof you see why it makes sense. If you are saying to yourself “I would
never have thought of starting with /z — ,/y?,” or “How do you know where to start?,” I am
afraid there are no easy answers. Writing proofs is as much of an art as it is a science. There
are three things that can help, though. First, don’t be afraid to experiment. If you aren’t sure
where to begin, try starting at the end. Think about the end goal and work backwards until you
see a connection. Sometimes working both backward and forward can help. Try some algebra
and see where it gets you. But in the end, make sure your proof goes from beginning to end. In
other words, the order that you figured things out should not necessarily dictate the order they
appear in your proof.

The second thing you can do is to read example proofs. Although there is some creativity
necessary in proof writing, it is important to follow proper proof writing techniques. Although
there are often many ways to prove the same statement, there is often one technique that works
best for a given type of problem. As you read more proofs, you will begin to have a better
understanding of the various techniques used, know when a particular technique might be the
best choice, and become better at writing your own proofs. If you see several proofs of similar
problems, and the proofs look very similar, then when you prove a similar problem, your proof
should probably resemble those proofs. This is one area where some students struggle—they
submit proofs that look nothing like any of the examples they have seen, and they are often
incorrect. Perhaps it is because they are afraid that they are plagiarizing if they mimic another
proof too closely. However, mimicking a proof is not the same as plagiarizing a sentence. To be
clear, by ‘mimic’, I don’t mean just copy exactly what you see. I mean that you should read
and understand several examples. Once you understand the technique used in those examples,
you should be able to see how to use the same technique in your proof. For instance, in many of
the examples related to even numbers, you may have noticed that they start with statement like
“Assume x is even. Then x = 2a for some integer a.” So if you need to write a proof related to
even numbers, what sort of statement might make sense to begin your proof?
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The third thing that can help is practice. This applies not only to writing proofs, but to
learning many topics. An analogy might help here. Learning is often like sports—you don’t learn
how to play basketball (or insert your favorite sport, video game, or other hobby that takes some
skill) by reading books and/or watching people play it. Those things can be helpful (and in some
cases necessary), but you will never become a proficient basketball player unless you practice.
Practicing a sport involves running many drills to work on the fundamentals and then applying
the skills you learned to new situations. Learning many topics is exactly the same. First you need
to do lots of exercises to practice the fundamental skills. Then you can apply those skills to new
situations. When you can do that well, you know you have a good understanding of the topic. So
if you want to become better at writing proofs, you need to write more proofs.

*Question 2.28. What three things can help you learn to write proofs?
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2.2 Implication and Its Friends

This section is devoted to developing some of the concepts that will be necessary for us to discuss
the ideas behind the next few proof techniques.

Definition 2.29. A boolean proposition (or simply proposition) is a statement which
is either true or false. We call this the truth value of the proposition.

Although not technically interchangeable, you may sometimes see the word statement instead
of proposition. Context should help you determine whether or not a given usage of the word
statement should be understood to mean proposition.

Definition 2.30. An implication is a proposition of the form “if p, then q,” where p and
q are propositions.

It is sometimes written as p — q, which is read “p tmplies q.” It is a statement that
asserts that if p is a true proposition then q is a true proposition.

An implication is true unless p is true and q is false.

Example 2.31. The proposition “If I do well in this course, then I can take the next course”
is an implication. However, the proposition “I can do well in this course and take the next
course” is not an implication.

Example 2.32. Consider the implication
“If you read zkcd, then you will laugh.” ¢

If you read zkcd and laugh, you are being consistent with the proposition. If you read zkcd
and do not laugh, then you are demonstrating that the proposition is false.

But what if you don’t read zkcd? Are you demonstrating that the proposition is true or
false? Does it matter whether or not you laugh? It turns out that you are mot disproving
it in this case—in other words, the proposition is still true if you don’t read zkcd, whether
or not you laugh. Why? Because the statement is not saying anything about laughing by
itself. It is only asserting that IF you read zkcd, then you will laugh. In other words, it is a
conditional statement, with the condition being that you read zkcd. The statement is saying
nothing about anything if you don’t read zkcd.

So the bottom line is that if you do not read zkcd, the statement is still true.

°If you are unfamiliar with zkcd, go to http://xked.com.

*Question 2.33. When is the implication “If you read zkcd, then you will laugh” false?

Answer
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*Exercise 2.34. Consider the implication “If you build it, they will come.” What are all of
the possible ways this proposition could be false?

Solution

Given an implication p — ¢, there are three related proposition. But first we need to discuss
the negation of a proposition.

Definition 2.35. Given a proposition p, the negation of p, written —p, is the proposition
“not p” or “it is not the case that p.”

Example 2.36. If p is the proposition “x < y” then —p is the proposition “it is not the case
that x <y,” or “z > y”.

Note: It is easy to incorrectly negate sentences, especially when they contain words like
“and”, “or”, “implies”, and “if.” This will become easier after we study logic in Chapter 4.

Definition 2.37. The contrapositive of a proposition of the form “if p, then q” is the
proposition “if q is not true, then p is not true” or “if not q, then not p” or =q — —p.

*Question 2.38. What is the contrapositive of the proposition “If you know Java, then you
know a programming language”?

Answer

Theorem 2.39. An implication is true if and only if its contrapositive is true. Stated another
way, an implication and its contrapositive are equivalent.
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*Fill in the details 2.40. Prove Theorem 2.39.

Proof: Let p — ¢ be our implication. According to the definition of implication,

it is false when p is true and ¢ is false and otherwise. Put another
way, it is true unless p is true and ¢ is false. The contrapositive, =g — —p, is

false when —¢ is true and is false, and true otherwise. Notice that this is
equivalent to g being and being true. Thus, the contrapositive is
true unless and . But this
is exactly when p — ¢ is true. O

Definition 2.41. The inverse of a proposition of the form “if p, then q” is the proposition
“if p is not true, then q is not true” or “if not p, then not q” or -p — —q.

*Question 2.42. What is the inverse of the proposition “If you know Java, then you know
a programming language”?

Answer

*Question 2.43. Are a proposition and its inverse equivalent? Explain, using the proposition
from Question 2.42 as an example.

Answer

Definition 2.44. The converse of a proposition of the form “if p, then q” is the proposition
“if q, then p” or ¢ — p.

*Question 2.45. What is the converse of the proposition “If you know Java, then you know
a programming language”?

Answer
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*Question 2.46. Are a proposition and its converse equivalent? Explain using the proposi-
tion about Java/programming languages.

Answer

As you have just seen, the inverse and converse of a proposition are not equivalent to the
proposition. However, it turns out that The inverse and converse of a proposition are equivalent
to each other. You will be asked to prove this in Problem 2.2. If you think about it in the right
way, it should be fairly easy to prove.

Example 2.47. Here is an implication and its friends:
1. Implication If I get to watch “The Army of Darkness,” then I will be happy.
2. Inverse If I do not get to watch “The Army of Darkness,” then I will not be happy.
3. Converse If I am happy, then I got to watch “The Army of Darkness.”

4. Contrapositive If I am not happy, then I didn’t get to watch “The Army of Darkness.”

*Question 2.48. Using the propositions from the previous example, answer the following
questions.

(a) Give an explanation of why an implication might be true, but the inverse false.

Answer

(b) Explain why an implication is saying the exact same thing as its contrapositive. (Don’t
just say “By Theorem 2.39.”)

Answer

Implications can be tricky to fully grasp and it is easy to get your head turned around when
dealing with them. We will discuss them in quite a bit of detail throughout the next few sections
in order to help you understand them better. We will also revisit them in Chapter 4.
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2.3 Proof by Contradiction

In this section we will see examples of proof by contradiction. For this technique, when trying
to prove a premise, we assume that its negation is true and deduce incompatible statements from
this. This implies that the original statement must be true. Let’s start by seeing a few examples.
Then we’ll describe the idea in more detail.

Example 2.49. Prove that if 5n + 2 is odd, then n is odd.

Proof:  Assume that 5n + 2 is odd, but that n is even. Then n = 2k for some
integer k. This implies that 5n + 2 = 5(2k) + 2 = 10k + 2 = 2(5k + 1), which is
even. But this contradicts our assumption that 5n + 2 is odd. Therefore it must
be the case that n is odd. O

The idea behind this proof is that if we are given the fact that 5n + 2 is odd, we are asserting
that n» must be odd. How do we prove that n is odd? We could try a direct proof, but it
is actually easier to use a proof by contradiction in this case. The idea is to consider what
would happen if n is not odd. What we showed was that if n is not odd, then 5n + 2 has to
be even. But we know that 5n + 2 is odd because that was our initial assumption. How can
5n + 2 be both odd and even? It can’t. In other words, our proof lead to a contradiction—an
impossibility. Therefore, something is wrong with the proof. But what? If n is indeed even,
our proof that 5n + 2 is even is correct. So there is only one possible problem—n must not be
even. The only alternative is that n is odd. Can you see how this proves the statement “if
5n + 2 is odd, then n is odd?”

Note: If you are somewhat confused at this point that’s probably O.K. Keep reading, and
re-read this section a few times if necessary. At some point you will have an “Aha” moment
and the idea of contradiction proofs will make sense.

Example 2.50. Prove that if n = ab, where a and b are positive integers, then either a < \/n

or b <./n.

Proof:  Let’s assume that n = ab but that the statement “either a < \/n or
b < /n” is false. Then it must be the case that a > y/n and b > y/n. But then
ab > \/ny/n = n. But this contradicts the fact that ab = n. Since our assumption
that @ > \/n and b > \/n lead to a contradiction, it must be false. Therefore it
must be the case that either a < y/n or b < /n. O

Sometimes your proofs will not directly contradict an assumption made but instead will con-

tradict a statement that you otherwise know to be true. For instance, if you ever conclude that
0 > 1, that is a contradiction. The next example illustrates this.
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1
*Fill in the details 2.51. Show, without using a calculator, that 6 — V35 < 10"

1 1
Proof: Assume that 6 — /35 > 10" Then 6 — 0 > . If we multiple

both sides by 10 and do a little arithmetic, we can see that 59 >

Squaring both sides we obtain , which is clearly

1
Thus it must be the case that 6 — V35 < 10" O

Now that we have seen a few examples, let’s discuss contradiction proofs a little more formally.
Here is the basic concept of contradiction proofs: You want to prove that a statement p is true.
You “test the waters” by seeing what happens if p is not true. So you assume p is false and use
proper proof techniques to arrive at a contradiction. By “contradiction” I mean something that
cannot possibly be true. Since you proved something that is not true, and you used proper proof
techniques, then it must be that your assumption was incorrect. Therefore the negation of your
assumption—which is the original statement you wanted to prove—must be true.

xEvaluate 2.52. Use the definition of even and odd to prove that if ¢ and b are integers and
ab is even, then at least one of a or b is even.

Proo#t |1 By definition of even numeers, let a e an even integer 2n, and
By the definition of odd numerers, let 8 Be an odd intecer 2 +I1. Then
(224D =d4na+2n =22na+D. Since 2na 1 is an integer, 2(2na+D
Is an even intecer By definition of even

Evaluation

Proot 2: If true, either one is odd and the other even, or they are Both
even, sO we will show that the product of an even and an odd is even, and
that the product of two evens intecers is even
Llet 8 =2k and B = 2x 4+ (2)(2x 4D = drkx + 2k = 2(2kx + k). 2kx+k is an
intecer so 2(2kx+k) is even
Let 8 = 2k and B = 2x (2k)2x) = 4kx = 2(2kx) since 2kx is an intecer,
2(2kx) is even
Thus, i£ 8 and B are intecers, a& is even, at least one of a or & is even

Evaluation
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Proof 3: Let a and B Be inteaers and assume that aB is even, But that
neither a Nor & is even. Then BOth a8 and B are odd, so a8 = 2Zn +1 and
B = 2m+I| for some intecers N and m. But then aB = (2ZN+D2m +D =
20N+ 2N+ 2m 4+ = 2+ n+ M) 41, which is odd since v+ n+m is an
inteaer. This contradicts the fact that aB is even. Therefore either a or
B Mmust re even.

Evaluation

For some students, the trickiest part of contradiction proofs is what to contradict. Sometimes
the contradiction is the fact that p is true. At other times you arrive at a statement that is clearly
false (e.g. 0 > 1). Generally speaking, you should just try a few things (e.g. do some algebra) and
see where it leads. With practice, this gets easier. In fact, with enough practice this will probably
become one of your favorite techniques. When a direct proof doesn’t seem to be working this is
usually the next technique I try.

Example 2.53. Let ay, ao, ..., a, be real numbers. Prove that at least one of these numbers
is greater or equal to the average of the numbers.

Proof:  The average of the numbers is A = (a1 + a2 + ... + ap)/n. Assume
that none of these numbers is greater than or equal to A. That is, a; < A
for all i = 1,2,...n. Thus (a; + a2 + ... + a,) < nA. Solving for A, we get
A>(ay+ag+...+a,)/n = A, which is a contradiction. Therefore at least one
of the numbers is greater than or equal to the average. O

Our next contradiction proof involves permutations. Here is the definition and an example in
case you haven’t seen these before.

Definition 2.54. A permutation is a function from a finite set to itself that reorders the
elements of the set.

Note: We will discuss both functions and sets more formally later. For now, just think of
a set as a collection of objects of some sort and a function as a black box that produces an
output when given an input.

Example 2.55. Let S be the set {a, b, c}. Then (a,b,c), (b,c,a) and (a, ¢, b) are permutations
of S. (a,a,c) is not a permutation of S because it repeats a and does not contain b. (b,d, a)
is not permutations of S because d is not in S, and ¢ is missing.
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xExercise 2.56. List all of the permutations of the set {1,2,3}. (Hint: There are 6.)

Answer

Note: In many contexts, when a list of objects occurs in curly braces, the order they are
listed does mot matter (e.g. {a,b,c} and {b,c,a} mean the same thing). On the other hand,
when a list occurs in parentheses, the order does matter (e.g. (a,b,c) and (b,c,a) do not
mean the same thing).

Example 2.57. Let (aj,aq,...,a,) be an arbitrary permutation of the numbers 1,2,...,n,
where n is an odd number. Prove that the product (a; — 1)(ag — 2) - - (ay, — n) is even.

Proof: Assume that the product is odd. Then all of the differences ay — k
must be odd. Now consider the sum S = (a1 — 1) + (ag — 2) + -+ + (ap, — n).
Since the a;’s are a just a reordering of 1,2,...,n, S = 0. But S is the sum of
an odd number of odd integers, so it must be odd. Since 0 is not odd, we have a
contradiction. Thus our initial assumption that all of the a — k are odd is wrong,
so at least one of them is even and hence the product is even. O

*Question 2.58. Why did the previous proof begin by assuming that the product was odd?

Answer

*Question 2.59. In the previous proof, we asserted that S = 0. Why was this the case?

Answer

We will use facts about rational /irrational numbers to demonstrate some of the proof tech-
niques. In case you have forgotten, here are the definitions.
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Definition 2.60. Recall that

e A rational number is one that can be written as p/q, where p and q are integers,
with q # 0.

e An irrational number is a real number that is not rational.

Example 2.61. Prove that /2 is irrational. We present two slightly different proofs. In
both, we will use the fact that any positive integer greater than 1 can be factored uniquely
as the product of primes (up to the order of the factors).

Proof 1: Assume that v/2 = %, where a and b are positive integers with b # 0. We can

assume a and b have no factors in common (since if they did, we could cancel them
and use the resulting numerator and denominator as a and b). Multiplying by b and
squaring both sides yields 2b? = a?. Clearly 2 must be a factor of a?. Since 2 is prime,
a must have 2 as a factor, and therefore a? has 22 as a factor. Then 2b% must also have
22 as a factor. But this implies that 2 is a factor of b2, and therefore a factor of b. This
contradicts the fact that a and b have no factors in common. Therefore v/2 must be
irrational.

Proof 2: Assume that v2 = %, where a and b are positive integers with b # 0. Multi-

plying by b and squaring both sides yields 2b> = a?. Now both a? and b? have an even
number of prime factors. So 2b? has an odd number of primes in its factorization and
a® has an even number of primes in its factorization. This is a contradiction since they
are the same number. Therefore v/2 must be irrational.

*Question 2.62. In proof 2 from the previous example, why do a? and b have an even
number of factors?

Answer

Now that you have seen a few more examples, it is time to begin the discussion about how/why
contradiction proofs work. We will start with the following idea that you may not have thought
of before. It turns out that if you start with a false assumption, then you can prove that anything
is true. It may not be obvious how (e.g. How would you prove that all elephants are less than
1 foot tall given that 1 + 1 = 17), but in theory it is possible. This is because statements of the
form “p implies ¢” are true if p (called the premise) is false, regardless of whether or not ¢ (called
the conclusion) is true or false.

Example 2.63. The statement “If chairs and tables are the same thing, then the moon is
made of cheese” is true. This may seem weird, but it is correct. Since chairs and tables are
not the same thing, the premise is false so the statement is true. But it is important to realize
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that the fact that the whole statement is true doesn’t tell us anything about whether or not
the moon is made of cheese. All we know is that if chairs and tables were the same thing,
then the moon would have to be made out of cheese in order for the statement to be true.

Example 2.64. Consider what happens if your parents tell you “If you clean your room,
then we will take you to get ice cream.” If you don’t clean your room and your parents don’t
take you for ice cream, did your parents tell a lie? No. What if they do take you for ice
cream? They still haven’t lied because they didn’t say they wouldn’t take you if you didn’t
clean your room. In other words, if the premise is false, the whole statement is true regardless
of whether or not the conclusion is true.

It is important to understand that when we say that a statement of the form “p implies ¢” is
true, we are not saying that ¢ is true. We are only saying that if p is true, then q has to be true.
We aren’t saying anything about ¢ by itself. So, if we know that “p implies ¢” is true, and we
also know that p is true, then ¢ must also be true. This is a rule called modus ponens, and it is
at the heart of contradiction proofs as we will see shortly.

*Exercise 2.65. It might help to think of statements of the form “p implies ¢” as rules
where breaking them is equivalent to the statement being false. For instance, consider the
statement “If you drink alcohol, you must be 21.”7 If we let p be the statement “you drink
alcohol” and ¢ be the statement “you are 21,” the original statement is equivalent to “p
implies ¢”.

1. If you drink alcohol and you are 21, did you break the rule?

2. If you drink alcohol and you are not 21, did you break the rule?

3. If you do not drink alcohol and you are 21, did you break the rule?

4. If you do not drink alcohol and you are not 21, did you break the rule?

5. Generalize the idea. If you have a statement of the form “p implies ¢”, where p and ¢
can be either true or false statements, exactly when can the statement be false?

6. If you do not drink alcohol, does it matter how old you are?

7. Can a statement of the form “p implies ¢” be false if p is false? Explain.
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Now we are ready to explain the idea behind contradiction proofs. We want to prove some
statement p is true. We begin by assuming it is false—that is, we assume —p is true. We use this
fact to prove that ¢—some false statement—is true. In other words, we prove that the statement
“—p implies ¢” is true, where ¢ is some false statement. But if —p is true, and “—p implies ¢” is
true, modus ponens tells us that ¢ has to be true. Since we know that ¢ is false, something is
wrong. We only have two choices: either —p is false or “—p implies ¢” is false. If we used proper
proof techniques to establish that “—p implies ¢” is true, then that isn’t the problem. Therefore,
the only other possibility is that —p is false, implying that p must be true. That is how/why
contradiction proofs work.

Let’s analyze the second proof from Example 2.61 in light of this discussion. The only as-
sumption we made was that /2 is rational (—p="“y/2 is rational”). From this (and only this), we
were able to show that a? has both an even and an odd number of factors (¢="“a?® has an even
and an odd number of factors”, and we showed that “—p implies ¢” is true). Thus, we know
for certain that if v/2 is rational, then a? has an even and an odd number of factors.! This fact
is indisputable since we proved it. If it is also true that v/2 is rational, modus ponens implies
that a? has an even and an odd number of factors. This is also indisputable. But we know
that a? cannot have both an even and odd number of factors. In other words, we have a con-
tradiction. Therefore, something that has been said somewhere is wrong. Everything we said is
indisputable except for one thing-that /2 is rational. That was never something we proved—we
just assumed it. So it has to be the case that this is false, which means that v/2 must be irrational.

To summarize, if you want to prove that a statement is true using a contradiction proof,
assume the statement is false, use this assumption to get a contradiction (i.e. prove a false state-
ment), and declare that it must therefore be true.

Notice that what ¢ is doesn’t matter. In other words, given the assumption —p, the goal in
a contradiction proof is to establish that any false statement is true. This is both a blessing and
a curse. The blessing is that any contradiction will do. The curse is that we don’t have a clear
goal in mind, so it can sometimes be difficult to know what to do. As mentioned previously, this
becomes easier as you read and write more proofs.

If this discussion has been a bit confusing, try re-reading it. The better you understand the
theory behind contradiction proofs, the better you will be at writing them. We will revisit some
of these concepts in the chapter on logic, so the more you understand from here, the better off
you will be when you get there. O.K., enough theory. Let’s see some more examples!

We did not prove that a® has an even and an odd number of factors. We proved that if v/2 is rational, then a?

has an even and an odd number of factors. It is very important that you understand the difference between these
two statements.
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then a < b.

Proof: We will prove this by contradiction. Assume that

Subtracting b from both sides and dividing by 2, we get

*F'ill in the details 2.66. Let a,b be real numbers. Prove that if a < b+ € for all € > 0,

€= . This implies that

a—2b
b - =
a<b+ 5

obtain a < b. But we started with the assumption that

a . Therefore,

“Hint: What assumption do we always make when doing a contradiction proof?
’Same as the previous blank

Since the inequality a < b + € holds for every € > 0 in particular it holds for

If we (to the previous equation), we

The following beautiful proof goes back to Euclid. It uses the assumption that any integer

greater than 1 is either a prime or a product of primes.

Example 2.67 (Euclid). Show that there are infinitely many prime numbers.

Proof: Assume that there are only a finite number of primes and let {p1, p2, . . .

be a list of all the primes. Consider the number

N =pip2---pn + 1L

This is a positive integer that is clearly greater than 1. Observe that none of the
primes on the list {p1,p2,...,p,} divides N, since division by any of these primes
leaves a remainder of 1. Since N is larger than any of the primes on this list, it
is either a prime or divisible by a prime outside this list. But we assumed the
list above contained all of the prime numbers. This is a contradiction. Therefore
there must be infinitely many primes. O
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«Fill in the details 2.68. If a,b, c are odd integers, prove that az? + bz + ¢ = 0 does not
have a rational number solution.

Proof: Suppose P is a rational solution to the equation. We may assume that

p and ¢ have no prime factors in common, so either p and ¢ are both odd, or one
is odd and the other even. Since L is a solution, we know that
q

=0.

If we , we obtain ap? 4 bpq + c¢®> = 0.

If both p and ¢ are odd, then ap? + bpq + c¢? is which contradicts

the fact that it is

If p is even and ¢ odd, then

If p is odd and ¢ even, then

Since all possibilities leads to a contradiction,
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2.4 Proof by Contraposition

Consider the statement “If it rains, then the ground will get wet.” It should be pretty easy to
convince yourself that this is essentially equivalent to the statement “If the ground is not wet,
then it didn’t rain.” In fact, since the second statement is just the contrapositive of the first,
Theorem 2.39 tells us that they are equivalent. Again, by equivalent we simply mean that either
both statements are true or both statements are false. This is the idea behind the proof technique
in this section.

Definition 2.69. A proof by contraposition is a proof of a statement of the form “if
p, then q” that proves contrapositive statement instead. That is, it proves the equivalent
statement “if not q, then not p.”

Example 2.70. Prove that if 5n + 2 is odd, then n is odd.

Proof: = We will instead prove that if n is even (not odd), then 5n + 2 is even
(not odd). Since this is the contrapositive of the original statement, a proof of
this will prove that that the original statement is true.

Assume n is even. The n = 2a for some integer a. Then 5n + 2 = 5(2a) + 2 =
2(5a + 1). Since ba + 1 is an integer, 2(5a + 1) is even. O

Be careful with proof by contraposition. Do not make the mistake of trying to prove the
converse or inverse instead of the contrapositive. In that case, you may write a correct proof, but
it would be a proof of the wrong thing.

In the next example we will see the similarities and differences between contradiction proofs
and proofs by contraposition.

Example 2.71. Prove that if 5n + 2 is even, then n is even.

Proof by contradiction:

Assume that 5n + 2 is even but that n is
odd. Since n is odd, n = 2k + 1 for some
integer k. Therefore

Proof by contraposition:

We will prove the equivalent statement
that if n is odd, then 5n + 2 is odd.
Assume n is odd. Then n = 2k + 1 for

some integer k. Then we have that 5n+2 = 5(2k+1)+2
Bn+2 = 5(2k+1)+2 = W0harb--2
— 10k+5+2 = sy
= 10k+7 = 2(5k+3)+1
= 2(5k+3)+1 which is odd since 5k + 3 is an integer.

But we assumed that 5n 4+ 2 was even,
which is a contradiction. Therefore our
assumption that n is odd must be incor-
rect, so n is even.

Since 5k + 3 is an integer, this shows
that 5n + 2 is odd.
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xEvaluate 2.72. Let n be an integer. Use the definition of even/odd to prove that if 3n + 2
is even, then n is even using a proof by contraposition.

Proot |1 We need to show that if N is even, then 3n+2 is even £ nis
even, then N =2k for some intecer k. Then 3n+2 =32k +2D) =Lk +b =
2(3K) +2(3), which is even recause it is the sum Of two even integers.

Evaluation

Proot 2: We need to show that i£ nis odd, then 3n+72 is odd. I# N is odd
then N =2k 4| for some intecer k. Then 3n=+2L = 3(2k+N+2L =Lk+34+2L =
bk +5 =S(Ek 4D, which is clearty odd.

Evaluation

Proot 3: We need to show that if Nnis odd, then 3n+72 is odd. I# n is odd
then N =2k +| for some intecer k. Then 3n+2 =32k +D+2 =Lk +5,
which is odd By the definition of odd.

Evaluation
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2.5 Other Proof Techniques

There are many other proof techniques. We conclude this chapter with a small sampling of the
more common and/or interesting ones. We will see a few other important proof techniques later
in the book.

Definition 2.73. A trivial proof is a proof of a statement of the form “if p, then q” that
doesn’t use p in the proof.

Example 2.74. Prove that if z > 0, then (z + 1)? — 2z > 22.

Proof: It is easy to see that

(x+1)2 -2 = (#24+224+1) -2z
22 +1
> 22
Notice that we never used the fact that > 0 in the proof. O

Definition 2.75. A proof by counterexample is used to disprove a statement by giving
an example of it being false.

Example 2.76. Prove or disprove that the product of two irrational numbers is irrational.

Proof: We showed in Example 2.61 that V2 is irrational. But v/2 % /2 = 2,
which is an integer so it is clearly rational. Thus the product of 2 irrational
number is not always irrational. O

Example 2.77. Prove or disprove that “Everybody Loves Raymond” (or that “Everybody
Hates Chris”).

Proof: Sinceldon’t really love Raymond (and I don’t hate Chris), the statement
is clearly false. O

xExercise 2.78. Prove or disprove that the sum of any two primes is also prime.

Proof
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Definition 2.79. A proof by cases breaks up a statement into multiple cases and proves
each one separately.

We have already seen several examples of proof by cases (e.g. Examples 2.24 and 2.68), but
it never hurts to see another example.

Example 2.80. Prove that if z # 0 is a real number, then 22 > 0.

Proof: If x # 0, then either z > 0 or x < 0.

If 2 > 0 (case 1), then we can multiply both sides of z > 0 by z, giving 2% > 0.
If z < 0 (case 2), then we can write y=-x, where y > 0. Then 2% = (—y)? =
(—1)%y? = y? > 0 by case 1 (since y > 0). Thus 2 > 0. In either case, we have
shown that z2 > 0. O

xFill in the details 2.81. Let s be a positive integer. Prove that the closed interval [s, 2s]
contains a power of 2.

Proof: If sis a power of 2 then
If s is not a power of 2, then it is strictly between two powers of 2. That is,

211 < 5 < 2" for some integer r. Then
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2.6 If and Only If Proofs

Sometimes we will run into “if and only if” (abbreviated iff) statements. That is, statements
of the form p if and only if ¢q. This is equivalent to the statement “p implies ¢ and g implies
p.” Thus, to prove that an iff statement is true, you need to prove a statement and its converse.
“p implies ¢” is sometimes called the forward direction and the converse is sometimes called the
backwards direction. Sometimes the converse statement is proven by contaposition, so that instead
of proving ¢ implies p, —p implies —¢q is proven.

*Question 2.82. Why is there a choice between proving ¢ implies p and proving —p implies
—q when proving the backwards direction?

Answer

Example 2.83. Prove that x is even if and only if x + 10 is even.

Proof: If x is even, then x = 2k for some integer k. Then = 4+ 10 = 2k + 10 =
2(k+5). Since k+5 is an integer, then x+ 10 is even. Conversely, if 2+ 10 is even,
then x4 10 = 2k for some integer k. Then z = (x4 10) — 10 = 2k — 10 = 2(k — 5).
Since k — 5 is an integer, then z is even. Therefore x is even iff 4+ 10 is even. [J

As we have mentioned before, the examples in this section are quite trivial and may seem
ridiculous—since they are so obvious, why are we bothering to prove them? The point is to use
the proof techniques we are learning. We will use the techniques on more complicated problems
later. For now we want the focus to be on proper use of the techniques. That is more easily
accomplished if you don’t have to think to hard about the details of the proof.

xExercise 2.84. Prove that x is odd iff z 4 20 is odd using direct proofs for both directions
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xExercise 2.85. Prove that x is odd iff x 4+ 20 is odd using using a direct proof for the
forward direction and a proof by contraposition for the backward direction.

*F'ill in the details 2.86. The two most common ways to prove p iff ¢ are

1. Prove that and , Or

2. Prove that and

xEvaluate 2.87. Use the definition of odd to prove that z is odd if and only if x — 4 is odd.

Proot [ Assume x is odd. Then x = 2k +1| for some intecer k. Then
x—4 =2k+l -4 =2k — 3, which is odd. Now assume that x —4 is odd. Since
(24D — 4 is odd, then x =2k =+ is clearly odd.

Evaluation

Proos 2. Assume x is odd. Then x =2k =+, so x—4 = (2k+D -4 =2k -2+,
which is odd since k — 2 is an inteaer. Now assuve x — 4 is even. Then
x —4 =2k for some inteaer k. Then x = 2k +4 = 2(k + 2, which is even
since k+2 is an intecer.

Evaluation
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2.7 Common Errors in Proofs

If you arrive at the right conclusion, does that mean your proof is correct? Some students seem
to think so, but this is absolutely false. Let’s consider the following example.

16 1
Example 2.88. Is the following proof that — = — correct? Why or why not?

64 4
Proof: This is true because if I cancel the 6 on the top and the bottom, I get
16 16 1
N O
64 B4 4

Evaluation: You probably know that you can’t cancel arbitrary digits in a frac-

tion, so this is not a valid proof. In addition, consider this: If this proof is correct,

1 1 1
then it could be used to prove that 6_(15 = 6—? =71= 1, which is clearly false.

Note: The point of the previous example is this: Don’t confuse the fact that what you are
trying to prove is true with whether or not your proof actually proves that it is true. An
incorrect proof of a correct statement is no proof at all.

A common mistake when writing proofs is to make one or more invalid assumptions without
realizing it. The problem with this is that it generally means you are not proving what you set
out to prove, but since the proof seems to “work”, the mistake isn’t always obvious. The next
few examples should illustrate what can go wrong if you aren’t careful.

*Question 2.89. What is wrong with this proof that the sum of two even integers is even?

Proo#: Let x and y Re even intecers. Then x =23 for some intecer
a and y =23 for some intecer a. So x+y=72a+2a =72(a+3). Since
a—+ais an intecer, 2(a +3) is even, so the sum of two even inteaers
is even d

Answer

Since the statement in the previous example is true, it can be difficult to appreciate why the
proof is wrong. The proof seems to prove the statement but as you saw in the solution, it actually
doesn’t. It proves a more specific statement. If it seems like we are being too nit-picky, consider
the next example.
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*Question 2.90. What is wrong with the following proof that the sum of two even integers
is divisible by 47

Proos: Let x and y Be two even intecers. Then x = 23 for some
intecer a and y = 23 for some intecer a. So x+y =2a+2a3 = H4a.
Since a is an integer, 4a is divisiele By 4, sO the sum Of two even
intecers is divisigle By 4. O

Answer

Another common mistake students make when trying to prove an identity /equation is to start
with what they want to prove and work both sides of it until they demonstrate that they are
equal. I want to stress that this is an invalid proof technique. Again, if this seems like I am
making something out of nothing, consider this example:

*Question 2.91. Consider the following supposed proof that —1 = 1.

Proos:

Il
s

(—N%

Therefore —| =1 O

How do you know that this proof is incorrect? (Think about the obvious reason, not any
technical reason.)

Answer

Notice that each step of algebra in the previous proof is correct. For instance, if a = b, then
a® = b? is correct. And (—1)? and 12 are both equal to 1. So the majority of the proof contains
proper techniques. It contains just one problem: It starts by assuming something that isn’t true.
Unfortunately, one error is all it takes for a proof to be incorrect.

Note: When writing proofs, never assume something that you don’t already know to be true!

*Question 2.92. When you are given an equation to prove, should you prove it by writing
it down and working both sides until you get them both to be the same? Why or why not?

Answer

Let’s be clear about this issue. If an equation is correct, you can work both sides until they are
the same. But as Example 2.91 demonstrated, if an equation is not correct, sometimes you can
also work both sides until they are the same. This should tell you something about this technique.
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*Question 2.93. You are given an equation. You work both sides of it until they are the
same. Should you now be convinced that the equation is correct? Why or why not?

Answer

Note: If you already know that an equation is true, then working both sides of it (for some
purpose other than demonstrating it is true) is a valid technique. However, it is more common
to start with a known equation and work just one side until it is what we want.

There are plenty of other common errors in proofs. We will see more of them throughout the
remainder of the book, especially in the Evaluate examples.
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2.8 DMore Practice

Now you will have a chance to practice what you have learned throughout this chapter with some
more exercises. Now that they aren’t in a particular section, you will have to figure out what
technique to use.

xExercise 2.94. Let p < g be two consecutive odd primes (two primes with no other primes
between them). Prove that p 4 ¢ is a composite number. Further, prove that it has at least
three, not necessarily distinct, prime factors. (Hint: think about the average of p and q.)
Proof:

xEvaluate 2.95. Prove or disprove that if x and y are rational, then x¥ is rational.

Proo# 1 Because x and y are Both rational, assuve x = a/B where a and &
are intecers and 8 # O. We can assume that a and B8 have no factors
in common (since i£ they did we could cancel them and use the resutting

numBers as our new a and B). Then x! = 2 so ¥’ is rational.

Evaluation

Proof 2: Notice that ¥ is just x multiplied Ry itself y times. A rational
numier muttiplied By a rational numeer is rational, so <’ is rational.

Evaluation

Since none of the proofs in the previous example were correct, you need to prove it.
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xExercise 2.96. Prove or disprove that if x and y are rational, then x¥ is rational.
Proof:

xEvaluate 2.97. Prove or disprove that if x is irrational, then 1/z is irrational.

Proot |: £ x is rational, assume it is an integer. £ x is an integer, it is
rational. |/x is an inteaer over an intecer, so it is rational. Therefore i£ x
Is rational, |/x is rational, so By contrapositive reasoning, i x is irrational,
[/x is irrational.

Evaluation

Proo$ 2. Assuwie that x is irrational. Then it cannot Be expressed as an
intecer over an intecer. Then clearly |/x cannot Be expressed as an intecer
over an integer.

Evaluation

Proot 3: Assuwe that xis rational. Then x = & where p and @ are intecers
| Q o . .
and @ # O. But then 1= F = . sO it is rational. Since we proved the

contrapositive, the statement is true.

Evaluation
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Proof 4+: We will prove the contrapositive. Assume that |/x is rational.
Since it is rational, |/x = a/B for some intecers a and B, with &8 # O.
Solving £or x we et x =B/a, sO x is rational.

Evaluation

Proof S: | will prove the contrapositive statement: £ |/x is rational, then
x is rational. Assume |/x is rational. Then | = 2 for some intecers a and
B Z 0. We know that [/x # O (since otherwise x-O =, which is impossigle),
so a # O. Muttiplying BOth sides of the previous equation By x we aet
x2 = Now i# we muttiply Both sides By £ (which we can do since a # O), we

Get x = £ Since 8 and & are intecers with a # O, x is rational.

Evaluation

xEvaluate 2.98. Mersenne primes are primes that are of the form 2P — 1, where p is prime.
Are all numbers of this form prime? Give a proof/counterexample.

Proo# |: Restate the proerlem as if 2P — | is prime then p is prime. Assume p
is NOt prime so p = st, where s and t are intecers. Thus 2P — =25t — | =
(25 —N(Qst—s42s5t-2s 4 ... 4925 4. Because neither of these factors is | or
2° —|
— 2P — | is not prime (contradiction)

— P is prime
— All numpers of the form 27 — | (with p a prime) are prime.

Evaluation

Proo$ 2: Numpers of the form 2P only have 2 as a factor. Since 2P — | is
clearly odd, it does not have 2 as a factor. Therefore it must Nnot have any
factors. So it is prime.

Evaluation
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xExercise 2.99. Let p be prime. Prove that not all numbers of the form 2P — 1 are prime.
Proof:
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2.9 Problems

Problem 2.1. Prove that a number and its square have the same parity. That is, the square of
an even number is even and the square of an odd number is odd.

Problem 2.2. Prove that the inverse of an implication is true if and only if the converse of the
implication is true.

Problem 2.3. Let a and b be integers. Consider the problem of proving that if at least one of
a or b is even, then ab is even. Is this equivalent to the statement from Evaluate 2.527 Explain,
using the appropriate terminology from this chapter.

Problem 2.4. Rephrase the statement from Evaluate 2.52 without using the words even or not.
Using terminology from this chapter, how did you come up with the alternative phrasing?

Problem 2.5. Prove or disprove that there are 100 consecutive positive integers that are not
perfect squares. (Recall: a number is a perfect square if it can be written as a? for some integer

a.)

Problem 2.6. Consider the equation n* + m?* = 625.

(a) Are there any integers n and m that satisfy this equation? Prove it.

(b) Are there any positive integers n and m that satisfy this equation? Prove it.

Problem 2.7. Consider the equation a® + b> = ¢3 over the integers (that is, a, b, and ¢ have to
all be integers).

(a) Prove that the equations has infinitely many solutions.

(b) If we restrict a, b, and ¢ to the positive integers, are there infinitely many solutions? Are
there any? Justify your answer. (Hint: Do a web search for “Fermat’s Last Theorem.”)

Problem 2.8. Prove that a is even if and only if a? is even.

Problem 2.9. Prove that ab is odd iff a and b are both odd.

Problem 2.10. Let n be an odd integer and k an integer. Prove that kn is odd iff k is odd.
Problem 2.11. Let n be an integer.

(a) Prove that if n is odd, then 3n + 4 is odd.

(b) Is it possible to prove that n is odd iff 3n + 4 is odd? If so, prove it. If not, explain why not
(i.e. give a counter example).

(c) If we don’s assume n has to be an integer, is it possible to prove that n is odd iff 3n + 4 is
odd? If so, prove it. If not, explain why not (i.e. give a counter example).

Problem 2.12. Let n be an integer.
(a) Prove that if n is odd, then 4n + 3 is odd.

(b) Is it possible to prove that n is odd iff 4n + 3 is odd? If so, prove it. If not, explain why not
(i.e. give a counter example).
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Problem 2.13. Prove that the product of two rational numbers is rational.

Problem 2.14. Prove or disprove: Every positive integer can be written as the sum of the squares
of two integers.

Problem 2.15. Prove that the product of a non-zero rational number and an irrational number
is irrational.

Problem 2.16. Prove that if n is an integer and 5n + 4 is even, then n is even using a
(a) direct proof

(b) proof by contraposition

(¢) proof by contradiction

Problem 2.17. Prove or disprove that n? —1 is composite whenever n is a positive integer greater
than or equal to 1.

Problem 2.18. Prove or disprove that n?—1 is composite whenever n is a positive integer greater
than or equal to 3.

Problem 2.19. Prove or disprove that P = NP.2

2A successful solution to this will earn you an A in the course. You are free to use Google or whatever other
resources you want for this problem, but you must fully understand the solution you submit.
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Chapter 3

Programming Fundamentals and
Algorithms

The purpose of this chapter is to review some of the programming concepts you should have picked
up in previous classes while introducing you to some basic algorithms and new terminology that
we will find useful as we continue our study of discrete mathematics. We will also practice our
skills at proving things by sometimes proving that an algorithm does as specified.

Algorithms are presented in a syntax similar to Java and C+4++. There is positive and a
negative for presenting algorithms using this syntax. The positive is that you should already be
familiar with it. The negative is that it ties our hands more than one often likes when discussing
algorithms. What I mean is that when discussing algorithms, we often want to gloss over some of
the implementation details. For instance, we may not care about data types, or how parameters
are passed (i.e. by value or by reference).

Consider an algorithm that swaps two values (we will see an implementation of this shortly).
The concept is the same regardless of what type of data is being swapped. But given our choice
of syntax, we will give an implementation that assumes a particular data type. Most of the time
the algorithms presented can be modified to work with other data types.

The issue of pass-by-value versus pass-by-reference is more complicated. We will have a brief
discussion of this later, but the bottom line is that whenever you implement an algorithm from
any source, you need to consider how this and other language-specific features might change how
you understand the algorithm, how you implement it, and/or whether you even can.

3.1 Algorithms

An algorithm is a set of instructions that accomplishes a task in a finite amount of time.

Example 3.1 (Area of a Trapezoid). Write an algorithm that gives the area of a trapezoid
with height h and bases a and b.

Solution: One possible solution is

double AreaTrapezoid(double a, double b, double h) {
return h*(a+b)/2;
}

45
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Note: Notice that we use the return keyword to indicate what value should be passed to
whoever calls an algorithm. For instance, if someone calls x=AreaTrapazoid(a, b, h), then
x will be assigned the value h x (a + b)/2 since this is what was returned by the algorithm.
Those who know Java, C, C4++, or just about any other programming language should already
be familiar with this concept.

*Exercise 3.2. Write an algorithm that returns the area of a square that has sides of width
w.

double areaSquare(double w) {

Definition 3.3. The assignment operator, =, assigns to the left-hand argument the value
of the right-hand argument.

Example 3.4. The statement x = a + b means “assign to x the value of a plus the value of
b'”

Note: Most modern programming languages use = for assignment. Other symbols used
nclude 1=, =:, <<, <, etc.

As it turns out, the most common symbol for assignment (=) is perhaps the most confusing
for someone who is first learning to program. One of the most common assignment statements
isx = x + 1;. What this means is “assign to the x its current value plus one.” However,
what it looks like is the mathematical statement “r is equal to x + 17, which is false for every
value of x. If this has tripped you up in the recent past or still does, fear not. Eventually you
will instinctively interpret it correctly, probably forgetting you were ever confused by it.

Example 3.5 (Swapping variables). Write an algorithm that will interchange the values of
two variables, x and y. That is, the contents of z becomes that of y and vice-versa.

Solution: We introduce a temporary variable ¢ in order to store the contents of
z in y without erasing the contents of y. For simplicity, we will assume the data
is of type Object.

void swap(Object x, Object y) {

Object t = x; // Store x in a temporary variable
X = y; // x now has the original value of y
y = t; // y now has the original value of x

}

It can be very useful to be able to prove that an algorithm actually does what we think it
does. Then when an error is found in a program we can focus our attention on the portions of
the code that we are uncertain about, ignoring the code that we know is correct.
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Example 3.6. Prove that the algorithm in Example 3.5 works correctly.

Proof: Assume the values a and b are passed into swap. Then at the beginning
of the algorithm, x = a and y = b. We need to prove that after the algorithm is
finished, z = b and y = a.

After the first line, x and y are unchanged and ¢t = a since it was assigned the
value stored in x, which is a. After the second line, x = b since it is assigned the
value stored in y, which is b. Currently x = b, y = b, and t = a. Finally, after the
third line, y = a since it is assigned the value stored in ¢, which is a. Since x is
still b, and y = a, the algorithm works correctly. O

Note: The correctness of this algorithm (and a few others in this chapter) is based on the
assumption that the variables are passed by reference rather than passed by value.

In C and C++, it is possible to pass by value or by reference, although we didn’t use the
proper syntaxr to do so. The * or & you sometimes see in argument lists is related to this.
In Java, everything is passed by value and it is impossible to pass by reference. However,
because non-primitive variables in Java are essentially reference variables (that is, they store
a reference to an object, not the object itself), in some ways they act as if they were passed by
reference. This is where things start to get complicated. I don’t want to get into the subtleties
here, especially since there are arguments about whether or not these are the best terms to
use. Let me give an analogy instead.®

If I share a Google Doc with you, I am passing by reference. We both have a reference
to the same document. If you change the document, I will see the changes. If I change the
document, you will see the changes. On the other hand, if I e-mail you a Word document, I am
passing by value. You have a copy of the document I have. FEssentially, I copied the current
value (or contents) of the document and gave that to you. If you change the document,
my document will remain unchanged. If I change my document, your document will remain
unchanged. This sounds pretty simple. However, it gets more complicated. In Java, you
can create a “primitive” Word document, but in a sense you can’t create an “object” Word
document. Instead, a Google Doc is created and you are given access (i.e. a reference) to it.
This is why in some ways primitive and object variables seem to act differently in Java.

I've already said too much. You will/did learn a lot more about this issue in another
course. Here is the bottom line: The assumption being made in the various swap algorithms
is that when a variable is passed in, the algorithm has direct access to that variable and not
just a copy of it. Thus if changes are made to that variable in the algorithm, it is changing
the variable that was passed in. This subtlety does not matter for most of the algorithms here.

“Inspired by a response on http://stackoverflow.com/questions/373419/whats-the-difference-between-
passing-by-reference-vs-passing-by-value

Note: We should be absolutely clear that it is impossible to implement the swap method
from Ezxample 3.5 in Java. In fact, there is no way to implement a method that swaps two
arbitrary values in Java. As we will see shortly, it is possible to implement a method that
swaps two elements from an array.
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Note: One final note before we move on. Whether or not the swap method (or any method)
can be implemented, we can still use it in other algorithms as if it can. This is because when
discussing algorithms we are usually more concerned about the idea behind the algorithm,
not all of the implementation details. Using a method like swap in another algorithm often
makes it easier to understand the overall concept of that algorithm. If we actually wanted to
implement an algorithm that uses swap, we would simply need to replace the call to swap with
some sort of code that accomplishes the task if swap is impossible to implement.

*Question 3.7. Does the following swap algorithm work properly? Why or why not?
void swap(Object x, Object y) {

X = y,
y = x5
}
Answer

Example 3.8. Write an algorithm that will interchange the values of two variables x and y
without introducing a third variable, assuming they are of some numeric type.

Solution: The idea is to use sums and differences to store the values. Assume
that initially x = @ and y = b.

void swap(number x, number y) {

x =x +y; // x = atb and y = Db
y=x-y; // x = atb and y = atb-b = a
x =x -y; // x = atb-a =b and y = a

}

Notice that the comments in the code sort of provide a proof that the algorithm
is correct, although keep reading for an important disclaimer.

Example 3.9. It was mentioned that the comments in the algorithm from Example 3.8
provide a proof of its correctness. What possibly faulty assumption is being made?

Solution: It is assumed that the arithmetic is performed with absolute preci-
sion, and that is not always the case. For instance, after the first line we are told
that x = a +b. What if a = 10,000, 000,000 and b =. 000000000017 Will = really
be exactly 10,000,000, 000. 000000000017 If it isn’t, the algorithm will not work

properly.

Problem 3.16 explores whether or not the algorithm in Example 3.8 works for integer types—
specifically 2’s complement numbers.
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3.2 The mod operator and Integer Division

Definition 3.10. The mod operator is defined as follows: for integers a and n such that
a >0 andn >0, a mod n is the integral non-negative remainder when a s divided by n.
Observe that this remainder is one of the n numbers

0, 1, 2, ..., n—1.

Java, C, C++, and many other languages use % for mod (e.g. int x = a % n instead of
int x = a mod n).

Example 3.11. Here are some example computations:

234 mod 100 = 34 1961 mod 37 =0 6mod5=1
38 mod 15 = 8 1966 mod 37 = 5 11modb5=1
15 mod 38 = 15 lmodb=1 16 mod 5 =1

*Exercise 3.12. Compute the following:

(a) 345 mod 100 = (d) 15 mod 9 = (g) 19 mod 12 =
(b) 23 mod 15 = (e) 27T mod 9 = (h) 31 mod 12 =
(c) 15 mod 4 = (f) 7mod 12 = (i) 47 mod 12 =

Definition 3.13. For integers a, b, and n, where n > 0, we say that a is congruent to b
modulo n if n divides a —b (that is, a — b = kn for some integer k). We write this as a = b
(mod n).

There are a few other (equivalent) ways of defining congruence modulo n.

e a =b (mod n) iff a and b have the same remainder when divided by n.
e a =b (mod n) iff a— b is a multiple of n.

If a — b # kn for any integer k, then a is not congruent to b modulo n, and we write this
as a Zb (mod n).

Example 3.14. Notice that 21 —6 =15=3-5, so 21 =6 (mod 5).

Notice that if a = b (mod n) and 0 < b < n, then b is the remainder when a is divided by n.
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Example 3.15. Prove that for every integer n, (n? mod 4) is either 0 or 1.

Proof:  Since every integer is either even (of the form 2k) or odd (of the form
2k + 1) we have two possibilities:

(2k)? = 4k?

0 (mod 4),or
(2k+1)2 = 4(k2+k)+1 1

(mod 4).

Thus, n? has remainder 0 or 1 when divided by 4. g

Example 3.16. Prove that the sum of two squares of integers leaves remainder 0, 1 or 2
when divided by 4.

Proof:  According to Example 3.15, the squares of integers have remainder 0
or 1 when divided by 4. Thus, when we add two squares, the possible remainders
when divided by 4 are 0 (0+0),1 (0+1or 1+40),and 2 (1+1). O

Example 3.17. Prove that 2003 is not the sum of two squares.

Proof:  Notice that 2003 = 3 (mod 4). Thus, by Example 3.16 we know that
2003 cannot be the sum of two squares. ]

The proof of the following is left as an exercise.

Theorem 3.18. a =b (mod n) iff* a mod n = b mod n.

%ff is shorthand for if and only if.

Example 3.19. Since, 1961 mod 37 = 0 # 4 = 1966 mod 37, we know that 1961 # 1966
(mod 37) by Theorem 3.18.

Note: Our definition of mod required that n > 0 and a > 0. However, it is possible to define
a mod n when a is negative. Unfortunately, there are two possible ways of doing so based on
how you define the remainder when the dividend is negative. One possible answer is negative
and the other is positive. However, they always differ by n, so computing one from the other
8 easy.

Example 3.20. Since —13 = (—2) *5 — 3 and —13 = (—3) * 5 + 2, we might consider the
remainder of —13/5 as either —3 or 2. Thus, —13 mod 5 = —3 and —13 mod 5 = 2 both seem
like reasonable answers. Fortunately, the two possible answers differ by 5. In fact, you can
always obtain the positive possibility by adding n to the negative possibility.
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xExercise 3.21. Fill in the missing numbers that are congruent to 1 (mod 4) (listed in
increasing order)

[ '117 [— '37 17 57 ’ ’ 177

Note: When using the mod operator in computer programs in situations where the dividend
might be negative, it is important to know which definition your programming language/com-
piler uses. Java returns a negative number when the dividend is negative. In C, the answer
depends on the compiler.

*Exercise 3.22. If you write a C program that computes —45 mod 4, what are the two
possible answers it might give you?

Answer

The next exercise explores a reasonable idea: What if we want the answer to a mod b to always
be between 0 and b— 1, even if a is negative? In other words, we want to force the correct positive
answer even if the compiler for the given language might return a negative answer.

*Evaluate 3.23. Although different programming languages and compilers might return
different answers to the computation @ mod b when a < 0, they always return a value between
—(b—1) and b — 1. Given that fact, give an algorithm that will always return an answer
between 0 and b — 1, regardless of whether or not a is negative. Try to do it without using
any conditional statements.

Solution |1 Use (8 (mod B)+e—N /2. Since it always returns a value retween
—(®& —D and B — | By adding & — | t0 BOth sides you et a value retween O
and 28 — 2. Mou then divide By 2 10 hit the taraet ranae of a return value
that is retween O and & — | whether the numger is positive or neaative.

Evaluation

Solution 2= Just return the arsolute value of a mod ..

Evaluation
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Solution 3: Use the followina:
int ¢ = a % b;
if (c<0) {
return -c;
} else {
return c;

}

Evaluation

Chapter 3

Solution 4: Use (a mod B) mod ..

Evaluation

Answer:

xExercise 3.24. Devise a correct solution to the Evaluate 3.23.

that is greater than or equal to x.

Definition 3.25. The floor of a real number x, written |x|, is the largest integer that is
less than or equal to x. The ceiling of a real number x, written [z, is the smallest integer

Example 3.26. [4.5| =4, [4.5] =5, |7
In general, if n is an integer, then |n| =
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xExercise 3.27. Determine each of the following.

L199)=___ 3. 9.00001] = 5. 9] =

2.[9.9=___ 4. [9.00001] = 6. [9] =

Theorem 3.28. Let a be an integer and x be a real number. Then a < x if and only if
a<|z].

Proof: If a < |z, then a < |x]| < x is clear. On the other hand, assume
a < z. Then a is an integer that is less than or equal to x. Since |x] is the largest
integer that is less than or equal to x, a < |z]. O

*Evaluate 3.29. Implement an algorithm that will round a real number x to the closest
integer, but rounds down at .5. You can only use numbers, basic arithmetic (+, —, *, /),
and floor(y) and/or ceiling(y) (which correspond to |y| and [y]). Don’t worry about
the data types (i.e. returning either a double or an int is fine as long as the value stored
represents an integer value).

Solution I:  return floor(x+.49).

Evaluation

Solution 2—:  return floor (x+1/2).

Evaluation

Solution 3:  return ceiling(x+.5).

Evaluation

Solution 4:  return ceiling(x-.5).

Evaluation
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Corollary 3.30. Let a, b, and ¢ be integers. Then a < b/c if and only if a < |b/c].

Proof:  Since b/c is a real number, this is a special case of Theorem 3.28. [

The floor function is important because in many programming languages, including Java, C, and
C++, integer division truncates. That is, when you compute n/k for integers n and k, the result
is rounded so it is close to zero. That means that if n,k > 0, n/k rounds down to |n/k|. But
if n < 0, n/k rounds up to [n/k]. So in Java, C, and C++, 3/4 = —3/4 =0, 11/5 = 2 and
—11/5 = —2, for instance.

xExercise 3.31. Compute each of the following, assuming they are expressions in Java, C,
or C++.

(@) 9/10=__ (e) 15/10 = @ -5/10=
(b) 10/10=__ (f) 19/10 = G) -10/10 =
() 11/10=__ (g) 20/10 = (k) -15/10 =
(d) 14/10=_____ (h) 90/10 = 1) -20/10 =

*Evaluate 3.32. Let n and m be positive integers with m > 2. Assuming integer division
truncates, write an algorithm that will compute n/m, but will round the result instead of
truncating it (round up at or above .5, down below .5). For instance, 5/4 should return 1,
but 7/4 should return 2 instead of 1. You may only use basic integer arithmetic, not including
the mod operator.

Solution I: floor(n/m+0.5)

Evaluation

Solution 2—: floor((n/m) + 1/2)

Evaluation

Solution 3: (int) (n/m+0.5)

Evaluation
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Although the previous example may seem like it is based on an unnecessary restriction, this is
taken from a real-world situation. When writing code for an embedded device (e.g. a thermostat
or microwave oven), code space is often of great concern. Performing just a single calculation
using doubles/floats can add a lot of code since it needs to add certain code to deal with the data
type. Sometimes the amount of code added is too much since embedded processors have a lot less
space than the processor in your laptop or desktop computer. Because of this, some embedded
programmers do everything they can to avoid all non-integer computations in their code when it
is possible.

*xExercise 3.33. Give a correct solution to round-instead-of-truncate problem from the pre-
vious example.
Answer:
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3.3 If-then-else Statements

Definition 3.34. The if-then-else control statement has the following syntax:

if(ezpression) {
block4
else {
blockB
}
and evaluates as follows. If expression is true then the statements in blockA are executed.

Otherwise, the statements in blockB are executed.

Example 3.35. Write an algorithm that will determine the maximum of two integers. Prove

your algorithm is correct.

Solution: The following algorithm will work.

int max(int x, int y) {
if(x >= y) {
return x;
} else {
return y;
}
}

There are three possible cases. If x > y, then x is the maximum, and it is returned
since the algorithm returns « if > y. If x = y, then they are both the maximum,
so returning either is correct. In this case it returns x, the correct answer. If
x < y, then y is the maximum and the algorithm returns gy, which is the correct
answer. In any case it returns the correct answer.

*Exercise 3.36. Write an algorithm that will determine the maximum of three numbers
that uses the algorithm from Example 3.35. Prove that your algorithm is correct.

int max(int x, int y, int z) {

Proof
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The previous exercise is an example of something that you are already familiar with: code
reuse. We could have written an algorithm from scratch, but it is much easier to use one that
already exists. Not only is the resulting algorithm simpler, it is easier to prove that it is correct
since we know that algorithm it uses is correct.

*Exercise 3.37. Write an algorithm that prints “Hello” if one enters a number between 4
and 6 (inclusive) and “Goodbye” otherwise. Use the function print(String s) to print.
You are not allowed to use any boolean operators like and, or, etc.

void HelloGoodbye(int x) {

For simplicity, we will sometimes use print to output results and not worry about whitespace
(e.g. spaces and newlines). You can think of this as being equivalent to Java’s System. out.print (i+"
") or C++'s cout<<i<<" " or C’s printf("%d ",1) if you would like.

*Question 3.38. The solution given for the previous example uses three print statements,
with two identical print statements appearing in different places. Is it possible to write the
algorithm using only two print statements while maintaining the restriction that you cannot
use and and or? If so, give that version of the algorithm. If not, explain why not.

Answer:
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3.4 The for loop

Here is the first of the two types of loops we will consider.

Definition 3.39. The for loop has the following syntax:

for(initialize; condition; increment) {
block4
}

where

e initialize is one or more statements that set up the initial conditions and is executed
once at the beginning of the loop.

e condition is the condition that is checked each time through the loop. If condition is
true, the statements in blockA are executed followed by the code in increment. This
process repeats until condition is false.

e increment is code that ensures the loop progresses. Typically increment is just a
simple increment statement, but it can be anything.

Example 3.40. Write an algorithm that returns n! when given n.

Solution: Here is one possible algorithm.

int factorial(int n) {
if (n==0) { return 1;
} else {
int fact = 1;
for(int i=1;i<=n;i++) {
fact = factx*i;
}

return fact;

*Question 3.41. Does the factorial algorithm from Example 3.40 ever do something
unexpected? If so, what does it do, when does it do it, and what should be done to fix it?

Answer
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xEvaluate 3.42. Evaluate these algorithms that supposedly compute n! for values of n > 0.
Don’t worry about what they do when n < 0.

Solution [:
int fact = 1;
for(int i=0;i<=n;i++) {
fact = factx*xi;
¥

return fact;

Evaluation

Solution 2
int fact = 1;
for(int i=2;i<=n;i++) {
fact = factx*i;
}

return fact;

Evaluation

Solution 3:
int fact = 1;
for(int i=n;i>0;i--) {
fact = factx*xi;
¥

return fact;

Evaluation

Solution 4:
int fact = 1;
for(int i=1;i<mn;i++) {
fact = fact*x(n-i);
}

return fact;

Evaluation
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xExercise 3.43. Write an algorithm that will compute =", where x is a given real number
and n is a given positive integer.

double power (double x, int n) {
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3.5 Arrays

Definition 3.44. An array is an aggregate of homogeneous types. The length of the array
is the number of entries it has.

A 1-dimensional array is akin to a mathematical vector. Thus if X is 1-dimensional array of
length n then
X = (X[0], X[1],..., X[n —1]).

We will follow the convention of common languages like Java, C, and C++ by indexing the arrays
from 0. This means that the last element is X[n — 1]. We will always declare the length of the
array at the beginning of a code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Thus if Y is a 2-dimensional array
with 2 rows and 3 columns then

Example 3.45. Write an algorithm that determines the maximum element of a 1-dimensional
array of n integers.

Solution:  We declare the first value of the array (the O-th entry) to be the
maximum (a sentinel value). Then we successively compare it to other n—1 entries.
If an entry is found to be larger than it, that entry is declared the maximum.

MaxEntry(int[] X, int n) {
int max = X[0];
for(int i=1;i<n;i++) {

if(X[i]l>max) {
max = X[i];
}
}
return max;

}

If your primary language is Java, you might wonder why we did not use X.length in the
previous algorithm. There are two reasons. First, not all languages store the length of an array as
part of the array. For examples, C and C++ do not. In these languages you always need to pass
the length along with an array. Second, sometimes you want to be able to process only part of an
array. Written as we did above, the algorithm will return the maximum of the first n elements of
an array. The algorithm works as long as the array has at least n elements.

Note: If an algorithm has an array and a variable n as parameters, you can probably assume
n is the length of the array unless it is otherwise specified.
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Example 3.46. Implement a method that swaps two elements of an array that works in Java
and other languages that can’t pass by reference.

Solution: Here is a method that swaps two elements of an integer array. Except
for the type of the parameter and temp variable, this works for any data type.

swap (int[] X, int a, int b) {
int temp = X[al;
X[al=X[b];
X[bl=temp;

}

I don’t want to get into the technical details of pass-by-value versus pass-by-
reference since that is really the subject of another course. But briefly, this works
because when the array is passed we have access to the individual array elements.
Therefore when we change them, they are changed in the original array.

Example 3.47. An array (X[0],... X[n — 1]) is given. Without introducing another array,
put its entries in reverse order.

Solution: Observe that we want to exchange the first and last element, the
second and second-to-last element, etc. That is, we want to exchange X|[0] <>
X[n—1], X[1] & X[n—2], ..., X[k] > X[n—k—1]. But what value of & is correct?
If we go all the way to n — 1, the result will be that every element is swapped and
then swapped back, so we will accomplish nothing. Hopefully you can see that if
we swap elements when k < n — k — 1, we will swap each element at most once.
The “at most once” is because if the array has an odd number of elements, the
middle element occurs when &k = n—k — 1, but we can skip it since it doesn’t need
to be swapped with anything. Notice that £k < n —k — 1 if and only if 2k < n — 1.
Since k and n are integers, this is equivalent to 2k < n — 2. This is equivalent
to k < [(n — 2)/2] by Corollary 3.30. Thus, we need to swap the elements
0,1,...,[(n—2)/2] with elements n—1,n—2,...,n—1—[(n—2)/2] =n—|n/2],
respectively. The following algorithm implements this idea.

reverseArray(int[] X, int n) {
for(int i=0;i<=(n-2)/2;i++) {
swap(X,i,n-i-1);

}

*Question 3.48. The previous algorithm went until ¢ was (n —2)/2, not [(n —2)/2]. Why
is this O.K.? Does it depend on the language? Explain.

Answer
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*Question 3.49. Does the following algorithm correctly reverse the elements of an array?
Explain.
reverseArray(int[] X, int n) {

for(int i=0;i<n/2;i++) {

swap(X,i,n-i-1);

}

Answer

Hopefully the previous example helps you realize that you need to be careful when working
with arrays. Formulas related to array indices change depending on whether arrays are indexed
starting at 0 or 1. In addition, formulas involving the number of elements in an array can be
tricky, especially when the formulas relate to partitioning the array into pieces (e.g. into two
halves). These can both lead to the so-called “off by one” error that is common in computer
science. The next example illustrates these problems, and one way to deal with it.

Example 3.50. Give a formula for the index of the middle element of an array of size n. If
there are two middle elements (e.g. n is even), use the first one.

Solution: Clearly the answer should be somewhere close to n/2. Unfortunately,
if n is odd, n/2 isn’t an integer. And clearly the answer won’t be the same when
indexing starting at both 0 and 1. Maybe we should try a few concrete examples.

Let’s first assume indexing starts at 1. If n = 9, the middle element is the 5th
element, which has index 5 = [9/2]. If n = 10, the middle element is also the
5th element. Then the index is 5 = 10/2 = [10/2]. Thus the formula [n/2]
should work. You should plug in a few more values to convince yourself that this
is correct.

Now let’s assume indexing starts at 0. There are a a few equivalent formulas we
can come up with. For starters, [n/2] —1 should work since this is just 1 less than
the answer above, and the indices are all shifted by one. But let’s come up with
a formula from scratch. If n = 9, the index of the middle element is 4 = |9/2]. If
n = 10, the index is 4 # [10/2]. So |n/2] works when n is odd, but not when n
is even. This one is not as obvious as it was when we started indexing at 1. With
a little thought, you may realize that |(n — 1)/2]| works.

*Question 3.51. The previous example seems to suggest that [n/2] —1 = |[(n —1)/2] for
all integers n. Is this correct? Do a few sample computations to try to convince yourself of
your answer.

Answer
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Note: Always be very careful with formulas related to the index of an array. Double-check
your logic by plugging in some values to be certain your formula is correct.

Definition 3.52. A boolean variable is a variable that can be either true or false.

Definition 3.53. The not unary operator changes the status of a boolean variable from true
to false and vice-versa. In Java, C, and C++, the not operator is ! and it appears before
the expression being negated (e.g. 'x).

The not operator is essentially the same thing as the negation we discussed earlier. The
difference is context—we are applying not to a boolean variable, whereas we applied negation to
a statement.

Example 3.54 (The Locker-Room Problem). A locker room contains n lockers, numbered
1 through n. Initially all doors are open. Person number 1 enters and closes all the doors.
Person number 2 enters and opens all the doors whose numbers are multiples of 2. Person
number 3 enters and toggles all doors that are multiples of 3. That is, he closes them if they
are open and opens them if they are closed. This process continues, with person ¢ toggling
each door that is a multiple of . Write an algorithm to determine which lockers are closed
when all n people are done.

Solution: Here is one possible approach. We use a boolean array Locker of
size n + 1 to denote the lockers (we will ignore Locker [0]). The value true will
denote an open locker and the value false will denote a closed locker.

LockerRoomProblem(boolean[] Locker, int n) {
// Person 1: Close them all
for(int i=1;i<=n;i++) {
Locker [i]l=false;
}
//People 2 through n: toggle appropriate ones
for(int j=2;j<=n;j++) {
for(k=j;k<=n;k++) A
if (k%j==0) {
Locker [k]

!Locker [k];
}
}
}
// Print the results
print("Closed:");
for(int 1=1;1<=n;1++) {
if (Locker[1]==false) {
print (1) ;
print (" ");
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3.6 The while loop

Definition 3.55. The while loop has syntax:

while(condition) {
blockA
}

The statements in blockA will execute as long as condition evaluate to true.

Example 3.56. An array X satisfies X[0] < X[1] <--- < X[n—1]. Write an algorithm that
finds the number of entries that are different.

Solution: Here is one possible approach.

int differentElements(int[] X, int n) {

int i = 0;
int different = 1;
while (i<n-1) {

i++;

if(x[i]'=x[i-1]) {

different++;

}

}

return different;

*Exercise 3.57. What will the following algorithm return for n = 57 Trace the algorithm
carefully, outlining all your steps.

mystery(int n) {
int x=0;
int i=1;
while(n>1) {
if (nxi>4) {
X=xX+2%n;
} else {
X=x+n;
}
n=n-2;
i++;
}

return Xx;

Answer
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Theorem 3.58. Let n > 1 be a positive integer. Fither n is prime or n has a prime factor
no greater than \/n.

Proof: If n is prime there is nothing to prove. Assume that n is composite.
Then n can be written as the product n = ab with 1 < a < b, where a and b
are integers. If every prime factor of n were greater than /n, then a > \/n and
b > \/n. But then n = ab > \/ny/n = n, which is a contradiction. Thus n must
have a prime factor no greater than /n. O

Example 3.59. To determine whether 103 is prime we proceed as follows. Observe that
|v/103| = 10 (According to Theorem 3.28, we only need concern ourselves with the floor).
We now divide 103 by every prime no greater than 10. If one of these primes divides 103, then
103 is not a prime. Otherwise, 103 is a prime. Notice that 103 mod 2 = 1, 103 mod 3 = 1,
103 mod 5 = 3, and 103 mod 7 = 5. Since none of these remainders is 0, 103 is prime.

*Exercise 3.60. Give a complete proof of whether or not 101 is prime.

Proof

xExercise 3.61. Give a complete proof of whether or not 323 is prime.

Proof

Example 3.62. Give an algorithm to determine if a given positive integer n is prime.

Solution:  We first deal with a few base cases. If n = 1, it is not prime, and if
n =2 or n = 3 it is prime. Then we determine if n is even, in which case it is not
prime. Finally, we loop through all of the odd values, starting with 3 and going
to \/n, determining whether or not n is a multiple of any of them. If so, it is not
prime. If we get through all of this, then n has no factors less than or equal to \/n
which means it must be prime. Here is the algorithm based on this description.

boolean isPrime(int n) {
if(n<=1) { // Anything less than 2 is not prime.
return false; }
if(n==2 || n==3) { // 2 and 3 are special cases.
return true; }
if(n%2==0) { // Discard even numbers right away.
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return false;

} else {
// Determine if it has any odd factors.
int 1 = 1;
while(i <= sqrt(mn)) {
i =i+ 2;

if (n%i==0) {
return false; }
}

return true; // It had no factors.

Note: It should be noted that although this algorithm in Exzample 3.62 works, it is not very
practical for large values of n. In fact, there is no known algorithm that can factor numbers
efficiently on a “classical” computer. The most commonly used public-key cryptosystems rely
on the assumption that there is no efficient algorithm to factor a number. However, if you
have a quantum computer, you are in luck. Shor’s algorithm actually can factor numbers
efficiently.

*Question 3.63. Why did the algorithm in the previous example deal with even numbers
differently?

Answer

xExercise 3.64. Use the fact that integer division truncates to write an algorithm that
reverses the digits of a given positive integer. For example, if 123476 is the input, the output
should be 674321. You should be able to do it with one extra variable, one while loop, one
mod operation, one multiplication by 10, one division by 10, and one addition.

int reverseDigits(int n) {
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3.7 Problems

Note: For the remainder of the book, whenever a problem asks for an algorithm, always
assume it is asking for the most efficient algorithm you can find. You will likely lose points
if your algorithm is not efficient enough.

Problem 3.1. Let n be a positive integer. Recall that a = b (mod n) iff n divides a — b (that is,
a—b=Fk-n for some k € Z). Use this formal definition to prove each of the following:

(a) a=a (mod n). (Reflexive property)
(b) If a = b (mod n), then b = a (mod n). (Symmetric property)
(¢) If a=b (mod n) and b = ¢ (mod n), then a = ¢ (mod n). (Transitive property)

Problem 3.2. Implement the swap operation for integers without using an additional variable
and without using addition or subtraction. (Hint: bit operations)

Problem 3.3. Prove or disprove that the following method correctly computes the maximum of
two integers x and y, assuming that the minimum method correctly computes the minimum of x
and y.

int maximum(int x, int y) {
int min = minimum(x,y);
int max = x + y - min;
return max;

¥
Problem 3.4. Give a recursive algorithm that computes n!. You can assume n > 0.

Problem 3.5. What will the following algorithm return for n = 37

iCanDuzSomething(int n) {
int x = 0;
while(n>0) A
for(int i=1;i<=n;i++) {
for(int j=i;j<=n;j++) {
X = X + ix*j;

}

n--;
return Xx;

}

Problem 3.6. Give an algorithm that will round a real number x to the closest integer, rounding
up at .5. You can only use floor(y), ceiling(y), basic arithmetic (+, -, *, /) and/or numbers.
You cannot use anything else, including conditional statements! Prove that your algorithm is
correct.

Problem 3.7. Recall that Example 3.32 had the conditions that n > 0 and m > 2. Also recall
that you gave a solution to this in Exercise 3.33. Also recall that integer division always truncates
toward zero, so negative numbers truncate differently than positive ones.

(a) Does your solution work when m = 27 Justify your answer with a proof/counterexample.
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(b) Does your solution work when n < 0?7 Justify your answer with a proof/counterexample.

(c) Give an algorithm that will work for any integer n and any non-zero m. Give examples
that demonstrate that your algorithm is correct for the various cases and/or a proof that it
always works. Make sure you consider all relevant cases (e.g., when it should round up and
down, when n and m are positive/negative). You may only use basic integer arithmetic and
conditional statements. You may not use floor, ceiling, abs (absolute value), etc. You also
may not use the mod operator since how it works with negative numbers is not the same for
every language.

Problem 3.8. Assume you have a function random(int n) that returns a random integer between
0 and n — 1, inclusive. Give code/pseudocode for an algorithm random(int a, int b) that
returns a random number between a and b, inclusive of both a and b. You may assume that a < b
(although in practice, this should be checked). You may only call random(int n) once and you
may not use conditional statements. Prove that your algorithm returns an integer in the required
range.

Problem 3.9. Assume you have a function random() that returns a non-negative random integer.
Give code/pseudocode for an algorithm random(int a, int b) that returns a random integer
between a and b, inclusive of both a and b. You may assume that a < b (although in practice, this
should be checked). You may use only basic integer arithmetic and you may only call random()
once. You may not use loops, conditional statements, floor, ceiling, abs (absolute value), etc.
Prove that your algorithm returns an integer in the required range.

Problem 3.10. The following method is a simplified version of a method that might be used
to implement a hash table or in a cryptographic system. Assume that for one particular use the
number returned by this function has to have the opposite parity (even/odd) of the parameter.
For instance, hash_it (4) returns 49 which has the opposite parity of 4, so it works for 4. Prove
or disprove that this function always returns a value of opposite parity of the parameter.

int hash_it(int x) {
return x*x+6*x+9;

}

Problem 3.11. Give an algorithm that computes all of the primes that are less than or equal to
n. For simplicity, you can just print all of the prime numbers up to n. Your algorithm should be
as efficient as possible. One approach is to modify the algorithm from Example 3.62 by using an
array to make it more efficient.

Problem 3.12. Prove or disprove that the following method computes the absolute value of x.
For simplicity, assume that all of the calculations are performed with perfect precision. You may
use the fact that Vo2 = x when x > 0 if it will help.

double absoluteValue(double x) {
double square = x*Xx;
double answer = sqrt(square);
return answer;

}

Problem 3.13. Prove or disprove that the following method computes the absolute value of x.
For simplicity, assume that all of the calculations are performed with perfect precision. You may
use the fact that (1/z)? = z when x > 0 if it will help.
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double absoluteValue(double x) {
double root = sqrt(x);
double answer = root*root;
return answver;

}

Problem 3.14. Problems 3.12 and 3.13 both assumed that “all of the calculations are performed
with perfect precision”. Is that a realistic assumption? Give an example of an input for which the
each algorithm will work properly. Then give an example of an input for which each algorithm
will not work properly. You can implement and run the algorithms to do some testing if you wish.

Problem 3.15. The following method is supposed to do some computations on a positive number
that result in getting the original number back. Prove or disprove that this method always returns
the exact value that was passed in. Unlike in the previous problems, here you should assume that
although a double stores a real number as accurately as possible, it uses only a fixed amount
of space. Thus, a double is unable to store the exact value of any irrational number—it instead
stores an approximation.

double returnTheParameterUnmodified (double x) {
double a = sqrt(x);
double b = axa;
return b;

}

Problem 3.16. Prove or disprove that the algorithm from Example 3.8 actually does work
properly with integer data types stored using 2’s complement.! You may restrict to 8-bit numbers
if it will help you think about it more clearly—a proof/counterexample for 8-bit number can easily
be modified to work for 32- or 64-bit numbers. (Hint: If it doesn’t work, what sort of numbers
might it fail on?)

Problem 3.17. Use the first definition of congruence modulo n given in Definition 3.13 to prove
Theorem 3.18. (Note: This is an if and only if proof, so you need to prove both ways.)

"When we say “works,” we mean for all possible values of x and y.
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Logic

4.1 Propositional Logic

Definition 4.1. A boolean proposition (or simply proposition) is a statement which is
either true or false (sometimes abbreviated as T or F). We call this the truth value of
the proposition.

Whether the statement is obviously true or false does not enter in the definition. One only needs
to know that its certainty can be established.

Example 4.2. The following are propositions and their truth values, if known:
72 = 49. (true)

5> 6. (false)

If p is a prime then p is odd. (false)

There exists infinitely many primes which are the sum of a square and 1. (unknown)

)

)

)

)

e) There is a God. (unknown)

) There is a dog. (true)

) T am the Pope. (false)
) Every prime that leaves remainder 1 when divided by 4 is the sum of two squares. (true)
)

Every even integer greater than 6 is the sum of two distinct primes. (unknown)

xExercise 4.3. Give the truth value of each of the following statements.

(a) 0=1

(b) 17 is an integer.

71
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(c) “Psych” is a TV show that aired on the USA network.

(d) In 1999, it was possible to buy a red Swingline stapler.

Example 4.4. The following are not propositions, since it is impossible to assign a true or
false value to them.

(a) Whenever I shampoo my camel.
(b) Sit on a potato pan, Otis!

)
)
(¢) What I am is what I am, are you what you are or what?
(d) z=2+1.

)

(e) This sentence is false.

xExercise 4.5. For each of the following statements, state whether it is true, false, or not a
proposition.

(a) i can has cheezburger?

(b) “Psych” was one of the best shows on TV when it was on the air.
(c) I know, right?

(d) This is a proposition.

(e) This is not a proposition.

*Exercise 4.6. Consider the statement “This is not a proposition.”

(a) Use the fact that “This is a proposition” is a proposition to prove that “This is not a
proposition” is a proposition. Then prove that its truth value is false.

Proof
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(b) Use a contradiction proof to prove that “This is not a proposition” is a proposition. Then
prove that its truth value is false.

Proof

4.1.1 Compound Propositions

Definition 4.7. A logical operator is used to combine one or more propositions to form a
new one. A proposition formed in this way is called a compound proposition. We call the
propositions used to form a compound proposition variables for reasons that should become
evident shortly.

Next we will discuss the most common logical operators. Some of these will be familiar to
you. When you learned about Boolean expressions in your programming courses, you proba-
bly saw NOT (e.g. if( !'list.isEmpty() )), OR (e.g. if( x>0 || y>0 )), and AND (e.g.
if( list.size() > O && list.get(0) > 1 )). The notation we use will be different, however.
This is because the symbols you are familiar with are specific choices made by whoever created
the programming language(s) you learned. Here we will use standard mathematical notation for
the operators.

For each of the following definitions, assume p and ¢ are propositions.

Definition 4.8. The negation (or NOT) of p, denoted by —p is the proposition ‘it is not
the case that p”. —p is true when p is false, and vice-versa. Other notations include P,
~ p, and 'p. Many programming languages use the last one.

Example 4.9. If p is the proposition “x < 0”, then —p is the proposition “It is not the case
that z < 0,” or “x > 0.”

*F'ill in the details 4.10. Let p be the proposition “I am learning discrete mathematics.”

Then —p is the proposition

The truth value of —p is
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xExercise 4.11. You need a program to execute some code only if the size of a list is not
0. The variable is named 1ist, and you can determine its size with list.size(). Give the
expression that should go in the if statement. In fact, give two different expressions that
will work.

Definition 4.12. The conjunction (or AND) of p and q, denoted by p A q, is the propo-
sition “p and q”. The conjunction of p and q is true when p and q are both true and false
otherwise. Many programming languages use && for conjunction.

Example 4.13. Let p be the proposition “z > 0” and ¢ be the proposition “xz < 10.” Then
p A q is the proposition “z > 0 and z < 10,” or “0 < z < 10.” In a Java/C/C++ program, it
would be “x>0 && x<10.”

Example 4.14. Let p be the proposition “z < 0” and ¢ be the proposition “xz > 10.” Then
p A q is the proposition “z < 0 and x > 10.” Notice that p A ¢ is always false since if x < 0,
clearly x » 10. But don’t confuse the proposition with its truth value. When you see the
statement ‘p A ¢ is “x < 0 and x > 10"’ and ‘p A ¢ is false,” these are saying two different
things. The first one is telling us what the proposition is. The second one is telling us its
truth value. ‘p A ¢ is false’ is just a shorthand for saying ‘p A ¢ has truth value false.’

*Fill in the details 4.15. If p is the proposition “I like cake,” and ¢ is the proposition “I

like ice cream,” then p A q is the proposition

Example 4.16. Write a code fragment that determines whether or not three numbers can
be the lengths of the sides of a triangle.

Solution: Let a, b, and ¢ be the numbers. For simplicity, let’s assume they are
integers. First we must have a > 0, b > 0, and ¢ > 0. Also, the sum of any two of
them must be larger than the third in order to form a triangle. More specifically,
we need a+b > ¢, b+ ¢ > a, and ¢+ a > b. Since we need all of these to be true,
this leads to the following algorithm.

IsItATriangle(int a, int b, int c) {
if (a>0 && b>0 && c>0 && a+b>c && b+c>a && a+c>b) {
return true;
} else { return false; }
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Definition 4.17. The disjunction (or OR) of p and q, denoted by pV q, is the proposition
“por q”. The disjunction of p and q is false when both p and q are false and true otherwise.
Put another way, if p is true, q is true, or both are true, the disjunction is true. Many
programming languages use || for disjunction.

Example 4.18. Let p be the proposition “x < 5” and ¢ be the proposition “z > 15.”
Then p V ¢ is the proposition “z < 5 or > 15.” In a Java/C/C++ program, it would be
“x<6 || x>15.”

*Fill in the details 4.19. Let p be the proposition “x > 0” and g be the proposition

“r < 10.” Then pV q is the proposition

Notice that p V ¢ is always since it is if x >0, and if z # 0,

then clearly , S0 it is then as well.

xExercise 4.20. Let p be “you must be at least 48 inches tall to ride the roller coaster,”
and ¢ be “you must be at least 18 years old to ride the roller coaster.” Express each of the
following propositions in English.

1. —=pis

2. pVqis

3. pAqis
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xExercise 4.21. Give an algorithm that will return true if an array of integers either starts
or ends with a 0, or false otherwise. Assume array indexing starts at 0 and that the array is
of length n. Use only one conditional statement. Be sure to deal with the possibility of an
empty array.

boolean startsOrEndsWithZero(int[] a, int n) {

*Question 4.22. Does the solution given for the previous exercise properly deal with arrays
of size 0 and 17 Prove it.

Answer

Definition 4.23. The exclusive or (or XOR) of p and q, denoted by p @ q, is the propo-
sition “p is true or q is true, but not both”. The exclusive or of p and q is true when

exactly one of p or q is true. Put another way, the exclusive or of p and q is true iff p and
q have different truth values.

Example 4.24. Let p be the proposition “x > 10” and g be the proposition “x < 20.” Then
p @ q is the proposition “x > 10 or z < 20, but not both.”

Note: Notice that V is an inclusive or, meaning that it is true if both are true, whereas ®
is an exclusive or, meaning it is false if both are true. The difference between V and & is
complicated by the fact that in English, the word “or” to can mean either of these depending
on context. For instance, if your mother tells you “you can have cake or ice cream” she is

likely using the exclusive or, whereas a prerequisite of “Math 110 or demonstrated competency
with algebra” clearly has the inclusive or in mind.
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7

XOR for each.

()

*Exercise 4.25. For each of the following, is the or inclusive or exclusive? Answer OR or

The special includes your choice of a salad or fries.

The list is empty or the first element is zero.

The first list is empty or the second list is empty.

You need to take probability or statistics before taking this class.

You can get credit for either Math 111 or Math 222.

Answer

*Exercise 4.26. Let p be “list 1 is empty” and g be “list 2 is empty.” Explain the difference
in meaning between pV ¢ and p @ q.

Answer

*Question 4.27. Let p be the proposition “x < 5” and ¢ be the proposition “x > 15.”

(a) Do the statements p V ¢ and p ® ¢ mean the same thing? Explain.

Answer

(b) Practically speaking, are p V ¢ and p @ ¢ the same? Explain.

XOR is not used as often as AND and OR in logical expressions in programs. Some languages
have an XOR operator and some do not. The issue gets blurry because some languages, like Java,
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have an explicit Boolean type, while others, like C and C++, do not. All of these languages have
a bitwise XOR operator, but this is not the same thing as a logical XOR operator. We will return
to this topic later. In the next section we will see how to implement & using V, A, and —.

Definition 4.28. The conditional statement (or implies) involving p and q, denoted by
P — q, is the proposition ‘if p, then q”. It is false when p is true and q is false, and true
otherwise. In the statement p — q, we call p the premise (or hypothesis or antecedent )
and q the conclusion (or consequence).

Example 4.29. Let p be “you earn 90% in the class,” and ¢ be “you will receive an A.”
Then p — ¢ is the proposition “If you earn 90% in the class, then you will receive an A.”

*Question 4.30. Assume that the proposition “If you earn 90% in this class, then you will
receive an A” is true.

(a) What grade will you get if you earn 90%? Explain.

Answer

(b) If you receive an A, did you earn 90%? Explain.

Answer

(c¢) If you don’t earn 90%, does that mean you didn’t get an A7 Explain.

Answer

Note: The conditional operator is by far the one that is the most difficult to get a handle
on for at least two reasons. First, the conditional statement p — q is not saying anything
about p or q by themselves. It is only saying that if p is true, then q has to also be true. It
doesn’t say anything about the case that p is not true. This brings us to the second reason.
Should F — T be true or false? Although it seems counterintuitive to some, it should be true.
Again, p — q is telling us about the value of ¢ when p is true (i.e., if p is true, the ¢ must
be true). What does it tell us if p is false? Nothing. As strange as it might seem, when p is
false, the whole statement is true regardless of the truth value of q.

If in the end you are still confused, you can (and should) simply fall back on the formal
definition: p — q is false when p is true and q is false, and is true otherwise. In
other words, if interpreting p — q as the English sentence “p implies q” is more harmful than
helpful in understanding the concept, don’t worry about why it doesn’t make sense and just
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remember the definition.®

“In mathematics, one tries to define things so they make sense immediately. Sometimes this is not possible
(if the concept is very complicated and/or it just doesn’t relate to something that is familiar). Sometimes a
term or concept is defined poorly but because of prior use the definition sticks. Sometimes it makes perfect
sense to some people and not to others, probably based on each person’s background. I think this last possibility
may be to blame in this case.

Definition 4.31. The biconditional statement involving p and q, denoted by p <> q, is
the proposition “p if and only if ¢” (or abbreviated as “p iff q”). It is true when p and q
have the same truth value, and false otherwise.

Example 4.32. Let p be “you earn 90% in this class,” and ¢ be “you receive an A in this

class.” Then p <> ¢ is the proposition “You earn 90% in this class if and only if you receive
an A.”

*Question 4.33. Assume that the proposition “You will receive an A in the course if and
only if you earn 90%” is true.

(a) What grade will you get if you earn 90%?

Answer

(b) If you receive an A, did you earn 90%?

Answer

(c¢) If you don’t earn 90%, does that mean you didn’t get an A?

Answer

Now let’s bring all of these operations together with a few more examples.

Example 4.34. Let a be the proposition “I will eat my socks,” b be “It is snowing,” and c
be “I will go jogging.” Here are some compound propositions involving a, b, and ¢, written
using these variables and operators and in English.

‘ With Variables/Operators ‘ In English ‘

(bv-b) —c Whether or not it is snowing, I will go jogging.
b— —c If it is snowing, I will not go jogging.
b— (a N —c) If it is snowing, I will eat my socks, but I will not go jogging.
a <> c When I eat my socks I go jogging, and when I go jogging 1
eat my socks.
or I eat my socks if and only if I go jogging.

79
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*F'ill in the details 4.35. Let p be the proposition “Iron Man is on TV,” ¢ be “I will
watch Iron Man,” and r be “I own Iron Man on DVD.” Fill in the missing information in

the following table.
‘ With Variables/Operators ‘ In English ‘

p—q

If I don’t own Iron Man on DVD and it is on TV, I will
watch it.

pAT A —q

I will watch Iron Man every time it is on TV, and that is
the only time I watch it.

I will watch Iron Man if I own the DVD.

4.1.2 Truth Tables

Sometimes we will find it useful to think of compound propositions in terms of truth tables.

Definition 4.36. A truth table is a table that shows the truth value of a compound propo-
sition for all possible combinations of truth assignments to the variables in the proposition.
If there are n variables, the truth table will have 2™ rows.

The truth table for — is given in Table 4.1 and the truth tables for all of the other operators
we just defined are given in Table 4.2. In the latter table, the first two columns are the possible
values of the two variables, and the last 5 columns are the values for each of the two-variable
compound propositions we just defined for the given inputs.

p | p
T | F
F\| T

Table 4.1: Truth table for —

p q|(rhg | (Ve |pDqg|p—q) | (peq)
T T T T F T T
T F F T T F F
F T F T T T F
F F F F F T T

Table 4.2: Truth tables for the two-variable operators
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Example 4.37. Construct the truth table of the proposition a V (=b A ¢).

Solution: Since there are three variables, the truth table will have 23 = 8 rows.
Here is the truth table, with several helpful intermediate columns.

J
Sy
>
o

aV (

J

S

>
&

NN NSNS
NN NN
NN N NS
NSRS YL
N TmT RNy
HNTTNNNS

Note: Notice that there are several columns in the truth table besides the columns for the
variables and the column for the proposition we are interested in. These are “helper” or
“intermediate” columns (those are not official definitions). Their purpose is simply to help
us compute the final column more easily and without (hopefully) making any mistakes.

xExercise 4.38. Construct the truth table for (p — ¢q) A q.

B Bes|Ran | Ran IS
5o an | na] lan || S

Note: As long as all possible values of the variables are included, the order of the rows of
a truth table does not matter. However, by convention one of two orderings is usually used.
Since there is an interesting connection to the binary representation of numbers, let’s take a
closer look at this connection in the next example.

Example 4.39 (Ordering the rows of a Truth Table). Notice that the values of the variables
can be thought of as the index of the row. So if a proposition involves two variables, the values
in the first two columns are used as a sort of index. We can order the rows by assigning a
number to each row based on the values in these columns. The order used here essentially
computes an index as follows: For the “index” columns, think of each T as a 0 and each
F as a 1. Now treat the numbers in these columns as binary numbers and order the rows
appropriately. For instance, if there are three variables, we can think of it as shown in the
following table.
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index

Eoes Bies Bes Mo B e M | =
NN
S5 BEs Hon Bie> B B L | Y
e ===
e N = =R S I =)
RO R ORORO
N <G, IS JUR

This is the ordering you should follow so that you can easily check your answers with those
in the solutions. It also makes grading your homework easier.

The other common ordering does the same thing, but maps T to 1 and F to 0.

There is also a way of thinking about this recursively. That is, given an ordering for a
table with n variables, we can compute an ordering for a table with n + 1 variables. It works
as follows: Make two copies of the columns corresponding to the variables, appending a T to
the beginning of the first copy, and an F to the beginning of the second copy.

xExercise 4.40. Construct the truth table of the proposition (a V —b) A ¢. You're on your
own this time to supply all of the details.

4.1.3 Precedence Rules

Consider the compound proposition aV—-bAc. Should this be interpreted as aV (=bAc), (aV-b)Ac,
or even possibly aV—(bAc)? Does it even matter? You already know that 34 (4%5) # (3+4) %5,
so it should not surprise you that where you put the parentheses in logical expressions matters,
too. In fact, Example 4.37 gives the truth table for one of these and you just computed the truth
table for another one in Exercise 4.40. If you compare them, you will see that they are not the
same. The third interpretation is also different from both of these.

To correctly interpret compound propositions, the operators have an order of precedence. The
order is =, A, @, V, —, and <. Also, — has right-to-left associativity, all other operators listed



Propositional Logic 83

have left-to-right associativity. Based on these rules, the correct way to interpret a V —b A c¢ is
aV ((=b) Ac).

It is important to know the precedence rules for the logical operators (or at least be able to
look it up) so you can properly interpret complex logical expressions. However, I generally prefer
to always use enough parentheses to make it immediately clear, especially when I am writing code.
It isn’t difficult to remember that — is first (that is, it always applies to what is immediately after
it) so sometimes I don’t use parentheses for it.

Example 4.41. According to the precedence rules, —a — a V b should be interpreted as

(ma) — (a VD).

Example 4.42. According to the precedence rules, a A =b — ¢ should be interpreted as
(a A (=b)) — c.

xExercise 4.43. According to the precedence rules, how should a A bV ¢ be interpreted?

Answer

*Question 4.44. Are (a Ab) Vc and a A (bV ¢) equivalent? Prove your answer.

Answer

*Evaluate 4.45. According to the associativity rules, how should a — b — ¢ be interpreted?

Solution: K should Be interpreted as (a8 — B) — ¢ -However,a — (B — @)
is equivalent, so it really doesnt matter.

Evaluation
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4.2 Propositional Equivalence

We have already informally discussed two propositions being equivalent. In this section, we will
formally develop the notion of what it means for two propositions to be equivalent (or, more
formally, logically equivalent). We will also provide you with a list of the most important logical
equivalences, along with some examples of some that aren’t necessarily as important, but make
interesting examples. But first, we need some new terminology.

Definition 4.46. A proposition that is always true is called a tautology. One that is always
false is a contradiction. Finally, one that is neither of these is called a contingency.

Example 4.47. Assume that x is a real number.

(a) The proposition “x < 0” is a contingency since its truth depends on the value of z.
e proposition “z® < 0” is a contradiction since it is false no matter what x is.

b) Th ition “z? < 07 i tradiction since it is fal tter what z i

(c) The proposition “z% > 07 is a tautology since it is true no matter what = is.

*F'ill in the details 4.48. State whether each of the following propositions is a tautology,
contradiction, or contingency. Give a brief justification.

(a) pV-pisa since either p or —p has to be true.
(b) pA—pisa since
(¢c) pVgisa since

To prove something is a tautology, one must prove that it is always true. One way to do this
is to show that the proposition is true for every row of the truth table. Another way is to argue
(without using a truth table) that the proposition is always true, often using a proof by cases.

Example 4.49. Prove that p V —p is a tautology.
Here are several proofs.

Proof 1: Since every row in the following truth table for p V —p is T, it is a tautology.

p|p|pVp
T\ F T
P\ T T

Proof 2: By definition of disjunction, if p is true, then pV —p is true. On the other hand,
if p is false, —p is true. In this case, pV —p is still true, again by definition of disjunction.
Since p V —p is true regardless of the value of p, it is a tautology.
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xEvaluate 4.50. Prove that [p A (p — q)] — ¢ is a tautology.

Proo#t |:
Plallp—=alPAP—=) |PAP—- Q) @
T T T T T
T|F F F T
F|T T F T
F|F T F T
Evaluation

filling out a truth tarle, as follows:

Proot 2: One way to show that PA(P — @) — @ is indeed a tautoloay is By

PAP—= @) - @

-
c
c
c

Plallp—alPAP =)
T T T
T|F F
F|T T
F|IF T

=
-
T
-

tautoloay.

Evaluation

Since they all return true for pAKP — Q) — @, this proves that it is a

Evaluation

Proo$ 3: One way to prove that this is a tautoloay is to make a couple of
assumptions. First, since we know that for any statement x — y where
y is true, then x can Be either true or false. So let us assumve that Q is
false for this case. From the left side of the statementt, if p is true, we
would have true and (true implies false), which is false, thus we would have
false implies false, which Is true, and I£ p is false, then we would have false
and (false implies true), which comes out false. So in BOth cases where @
Is false, the statement equals out to false implies false, which is true, thus
all four cases are true, therery proving that P A (P — Q) — @ is a tautoloay.
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Proo#$ 4: Since an implication can only Be false when the premise is true
and the concdusion is false, we only need to prove that this cant happen.
So let’s assume that PAKP — Q) is true But that @ is false. Since pA(P — Q)
is true, p is true and p — @ is true (By definition of conjunction). But if p
is true and @ is false, p — @ is false. This is a8 contradiction, so it must e
the case that our assumption that p AP — Q) is true But that a is false is
incorrect. Since that was the only possigle way for pA (P — Q) — @ to Be
false, it cannot Be false. Therefore it is a tautoloay.

Evaluation

Proot S: Because 'merica.

Evaluation

Now we are ready to move on to the main topic of this section.

Definition 4.51. Let p and q be propositions. Then p and q are said to be logically
equivalent if p <+ q is a tautology. An alternative (but equivalent) definition is that p and
q are equivalent if they have the same truth table. That is, if they have the same truth value
for all assignments of truth values to the variables.

When p and q are equivalent, we write p = q. An alternative notation is p = q.

Note: p = q is not a compound proposition. Rather it is a statement about the relationship
between two propositions.

There are many logical equivalences (or identities/rules/laws) that come in handy when work-
ing with compound propositions. Many of them (e.g. commutative, associative, distributive) will
resemble the arithmetic laws you learned in grade school. Others are very different. The most
common ones are given in Table 4.3.

We will provide proofs of some of these so you can get the hang of how to prove propositions
are equivalent. One method is to demonstrate that the propositions have the same truth tables.
That is, they have the same value on every row of the truth table. But just drawing a truth table
isn’t enough. A statement like “since p and ¢ have the same truth table, p = ¢” is necessary to
make a connection between the truth table and the equivalence of the propositions. Let’s see a
few examples.

Example 4.52. Prove the double negation law: —(—p) = p.

Proof: The following is the truth table for p and —(—p).
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p|—p —(=p)
T | F T
F| T F
Since the entries for both p and —(—p) are the same for every row, =(-p) = p. O

The two versions of De Morgan’s Law are among the most important propositional equiva-
lences for computer scientists. It is easy to make a mistake when trying to simplify expressions
conditional statements, and a solid understanding of De Morgan’s Laws goes a long way. In light
of this, let’s take a look at them next.

Example 4.53. Prove the first version of DeMorgan’s Law: —(pV q) = —=p A ~q

Proof: We can prove this by showing that in each case, both expression have
the same truth table. Below is the truth table for =(p V ¢) and —p A —¢q (the gray

columns).
p q|pVqg| (Ve | -p|q| PAg
T T| T F F | F F
T F| T F F| T F
F T| T F T | F F
F F| F T T | T T

Since they are the same for every row of the table, =(pV q) = —p A —q.

Name ‘ FEquivalence
commutativity | pVqg=qVDp
PANG=qAD
associativity pV(gVvr)=(pVq Vr
pPA(gAT)=(@AG AT
distributive pA(gVr)=((pAqV(pAT)
pV(gAT)=(@VgA(pVr)
identity pVF=p
pAT =p
negation pV-op=T
pAp=F
domination pVT =T
pANF=F
idempotent pVp=p
PAP=Dp
double negation | =(—p) =p
DeMorgan's =(pVq)=-pA—q
~(pAg)=-pV—q
absorption pV(pAqg)=p
pA(pVg =p

Table 4.3: Common Logical Equivalences
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xExercise 4.54. Prove the second version of De Morgan’s Law: =(p A q) = —pV —q.

Proof

pAqg| ~(pAq) | | —q|pVg

NN
N TN

Truth tables aren’t the only way to prove that two propositions are equivalent. You can also
use other equivalences. Let’s see an example.

*Fill in the details 4.55. Prove the idempotent laws (p V p = p and p A p = p) by using
the other equivalences.

Proof: We have

p = pVF (by identity)
= pV(pA-p) (by )
= (Vp)AlpV-p) (by )
= (pVp)AT (by negation)

= (by identity)

Thus, pV p = p. Similarly,

p = (by identity)

= (by negation)

= (by distributive)

= (by negation)

= pAp (by )

Thus, . O
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Although it is helpful to specifically state which rules are being used at every step, it isn’t
always required.

Example 4.56. Prove that (p Aq) V (p A —q) = p.

Proof: It is not too difficult to see that

PAQV(PA-q) =pA(qV—q)=pAT =p.

xExercise 4.57. Use the other equivalences (not a truth table) to prove the Absorption
laws.

(a) Prove that pV (p Aq) = p.
Proof:

(b) Prove that p A (pV q) = p.
Proof:

One use of propositional equivalences is to simplify logical expressions.
Example 4.58. Simplify —(p V —q).
Solution: Using DeMorgan’s Law and double negation, we can see that
=(pV—g) =-pA=(g) =-pAg.

Of course, this also applies to simplifying conditional expressions in code.
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Example 4.59. Simplify the following code as much as possible.

if ( !'(a==null || a.size()<=0) ) {
a.clear () ;

}

Solution: First, notice that by DeMorgan’s Law, ! (a==null || a.size()<=0)
is equivalent to ! (a==null) && !(a.size()<=0). Simplifying a bit more, we get
a!=null && a.size()>0. Thus, the code becomes:

if (a'!=null && a.size()>0) {
a.clear();

}
This may not look much simpler, but it is much easier to understand.

This simplification can also be done by defining p to be a==null and ¢ to be
a.size()<=0. Then the expression is —=(pV¢q). Applying De Morgan’s Law, this is
the same as =pA—q, which we then translate back to ! (a==null) && !(a.size()<=0)
and simplify as in the final step above.

As the previous example demonstrates, you can apply the rules to propositions in various
form. Sometimes it is useful to explicitly define p and ¢ (and sometimes r) and write expressions
using formal mathematical notation, but at other times it is just as easy to apply the rules the
the expressions as they are. In the previous example, we didn’t gain that much by defining p and
g. But with more complicated expressions it certainly can be helpful.

Note: A common mistake is to forget to use De Morgan’s law when dealing with negation. For
instance, in the last example, replacing the code ! (a==null || a.size()<=0 ) with the code
I (a==null) || !(a.size()<=0) would be incorrect. You cannot just distribute a negation
among other terms. Always remember to use De Morgan’s law: —(pV q) # —pV —q.

xExercise 4.60. Simplify the following code as much as possible.
Hint: Example 4.56 might be of use.

if ((x>0 && x<y) || (x>0 && x>=y)) {
X=y;

}
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xEvaluate 4.61. Simplify the following code as much as possible.

if (x>0) {
if(x<y |l x>0) {
X=y;
}
}

Solution: Because the second if is in the first one which is if (x > O)
then x > O is duplicated But at the same tive to satisfy the second
one we just Nneed to keep the second If and cut the first one. x <yand
x > O are independent conditions so they cannot Be more simplified.
So the answer is:

if(x<y |l x>0) {
x=y;

}

Evaluation

xExercise 4.62. Simplify the following code as much as possible.

if (x>0) {
if(x<y |l x>0) {
X=y;
}
}

Although some of these examples may seem a bit contrived, in some sense they are realistic.
As code is refactored, code is added and removed in various places, conditionals are combined or
separated, etc. and sometimes it leads to conditionals that are more complicated than they need
to be. In addition, when working on large teams, you will often work on code written by others.
Since some programmers don’t have a good grasp on logic, you will certainly run into conditional
statements that are way more complicated and convoluted than necessary. As I believe these
examples demonstrate, simplifying conditionals is not nearly as easy as one might think. It takes

great care to ensure that your simplified version is still correct.
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Note: There is an important difference between the logical operators as discussed here and how
they are implemented in programming languages such as Java, C, and C++. It is something
that is sometimes called short circuiting. You are probably familiar with the concept even
if you haven’t heard it called that before. It exploits the domination laws:

FAhq=F

TVg=T

Let’s see an example.

Example 4.63. Consider the statement if (x>=0 && al[x]!=0). The first domination law
implies that when x < 0, the expression in the if statement will evaluate to false regardless of
the truth value of a[x]!=0. Therefore, many languages will simply not evaluate the second
part of the expression—they will short circuit.

The same thing happens for statements like if (x<0 || x>a.length). When z < 0, the
expression is true regardless of the truth value of x>a.length. Again, many languages don’t
evaluate the second part of this expression if the first part is true. Of course, if the first part
is false, the second part is evaluated since the truth value now depends on the truth value of
the second part.

There are at least two benefits of this. First, it is more efficient since sometimes less code
needs to be executed. Second, it allows the checking of one condition before checking a second
condition that might cause a crash. You have probably used it in statement like the above to
make sure you don’t index outside the bounds of an array. Another use is to avoid attempting
to access methods or fields when a variable refers to null (e.g. if (a!=null && a.size()>0)).

But this has at least two consequences that can cause subtle problems if you aren’t careful.
First, although the AND and OR operators are commutative (e.g. pV q and gV p are equiv-
alent), that is not always the case for Boolean expressions in these languages. For instance,
the statement if (x>=0 && al[x]!=0) is not equivalent to if (a[x]!=0 && x>=0) since the
second one will cause a crash if x < 0. Second, if the second part of the expression is code
that you expect will always be executed, you may spend a long time tracking down the bug
that this creates.

*Evaluate 4.64. Rewrite the following segment of code so that it is as simple as possible
and logically equivalent.

if ( '(list.isEmpty() && list.get(0)>=100) && !(list.get(0)<100) )

{

X++;
} else
{

x--;

}
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Solution I: The second and third statements mean the same thina Also,
I$ the second is true then we aot a value so we know the list is Nnot
empty, so the first statement is unnecessary. This leads to the followina
eQuivalent code:

if(list.get(0) >= 100) {x++;} else {x——;}

Evaluation

Solution 2: | used DeMoraan’s law to ortain:

if(11list.isEmpty() || list.get(0) < 100) {
X+
} else {
X==;

}

Evaluation

Solution 3: Let a Be list.isEmpty() and & Be list.get(0)>=100. But then
—-B =1list.get (0)<100. The oriainal expression is —(a AR A «(—B). But

—(a ANBYA=(—B) = —(aABYABR
(-aV-B)AB
(=a ABY V(=B AR)
(-aNBYVF

= -aAB

So my simplified code is

if( 'list.isEmpty() && list.get(0)>= 100 ) {
X++;
} else {
==

¥

Evaluation
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*Question 4.65. In the solutions to the previous problem we said that the final solution
was correct. But there might be a catch. Go back to the original code and the final solution
and look closer. Is the final solution really equivalent to the original? Explain why or why
not.

Evaluation

The previous question serves as a reinforcement of a point previously made. When dealing
with logical expressions in programs, we have to be careful about our notion of equivalence. This
is because of short-circuiting and the fact that expressions in programs, unlike logical statements,
can crash instead of being true or false.

*Exercise 4.66. Let p be “x > 07, ¢ be “y > 0,” and r be “Exactly one of = or y is greater
than 0.”

(a) Express r in terms of p and ¢ using @ (and possibly —).

Answer

(b) Express r in terms of p and g without using ®.

Answer

Table 4.4 contains some important identities involving —, <+, and &. Since these operators
are not always present in a programming language, identities that express them in terms of Vv, A,
and — are particularly important.

p&q= (Vg A-(pAq) perqg=@®—q N(q—Dp)
p®qg=@A=qQ)V(opAq)| |pqg=—p g

-(p®g =peq perg=@ANqV(=pA-q)
p—q=-qg——p ~(pe g =pe g
p—q=-pVyq —(pe g =pdyq

Table 4.4: Logical equivalences involving —, <+, and &
Here is the proof of one of these.

Example 4.67. Prove that p® q= (p A —q) V (-p A q).

Solution: It is straightforward to see that (p A —q) V (—p A q) is true if p is true
and q is false, or if p is false and ¢ is true, and false otherwise. Put another way,
it is true iff p and ¢ have different truth values. But this is the definition of p ® gq.
Thus, p@ q=(pA—q)V (-pAq).

The previous example demonstrates an important general principle. When proving identities
(or equations of any sort), sometimes it works best to start from the right hand side. Try to keep
this in mind in the future.
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xEvaluate 4.68. Show that p <> ¢ and (p A q) V (=p A —q) are logically equivalent.

Proot |: p <> @is true when p and @ are Both true, and so is (PAQ)V(-PA-Q).
Therefore they are loaically equivalent.

Evaluation

Proot 2. They are Both true when p and @ are Both true or roth false.
Therefore they are loaically equivalent.

Evaluation

Proos 3: Each of these is true precisely when p and @ are Both true.

Evaluation

Proos 4: Each of these is true when p and @ have the same truth value
and false otherwise, so they are equivalent.

Evaluation

In the previous example, you should have noticed that just a subtle change in wording can be
the difference between a correct or incorrect proof. When writing proofs, remember to be very
precise in how you word things. You may know what you mean when you wrote something, but
a reader can only see what you actually wrote.
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4.3 Predicates and Quantifiers

Definition 4.69. A predicate or propositional function is a statement containing one
or more variables, whose truth or falsity depends on the value(s) assigned to the variable(s).

We have already seen predicates in previous examples. Let’s revisit one.

Example 4.70. In a previous example we saw that “x < 0” was a contingency, “x® < 0” was
a contradiction, and “z? > 0” was a tautology. Each of these is actually a predicate since
until we assign a value to z, they are not propositions.

Sometimes it is useful to write propositional functions using functional notation.

Example 4.71. Let P(z) be “x < 0”. Notice that until we assign some value to z, P(x) is
neither true nor false.

P(3) is the proposition “3 < 0,” which is false.

If we let Q(x) be “z? > 0,” then Q(3) is “3%2 > 0,” which is true.

Notice that both P(z) and “x < 0” are propositional functions. In other words, we don’t
have to use functional notation to represent a propositional function. Any statement that has a
variable in it is a propositional function, whether we label it or not.

xExercise 4.72. Which of the following are propositional functions?

() 2?2+22+1=0

(b) _ 3%42-34+1=0

(¢c) __ John Cusack was in movie M.

(d) _ x is an even integer if and only if = 2k for some integer k.

Definition 4.73. The symbol ¥ is the universal quantifier, and it is read as “for all”, “for
each”, “for every”, etc. For instance, Yx means “for all x”. When it precedes a statement,
it means that the statement is true for all values of x.

As the name suggests, the “all” refers to everything in the universe of discourse (or

domain of discourse, or simply domain), which is simply the set of objects to which the
current discussion relates.

Example 4.74. Let P(x)=“c < 0”. Then P(x) is a propositional function, and VaxP(x)
means “all values of x are negative.” If the domain is Z, VxP(z) is false. However, if the
domain is negative integers, Vo P(x) is true.
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Hopefully you recall that N is the set of natural numbers ({0,1,2,...}) and Z is the set of
integers. We will use these in some of the following examples.

Example 4.75. Express each of the following English sentences using the universal quantifier.
Don’t worry about whether or not the statements are true. Assume the domain is real
numbers.

(a) The square of every number is non-negative.

(b) All numbers are positive.

Solution:

(a) Vx(x

2 > 0)
(b) Yz(x > 0)

xExercise 4.76. Express each of the following using the universal quantifier. Assume the
domain is Z.

(a) Two times any number is less than three times that number.

Answer

(b) n!is always less than n".

Answer

Example 4.77. The expression Vz(z? > 0) means “for all values of z, 2 is non-negative”.

But what constitutes all values? In other words, what is the domain? In this case the most
logical possibilities are the integers or real numbers since it seems to be stating something
about numbers (rather than people, for example). In most situations the context should make
it clear what the domain is.

Example 4.78. The expression Yz > 0,22 > 0 means “for all positive values of z, > >
0.” There are several other ways of expressing this idea, but this one is probably the most
convenient. One alternative would be to restrict the domain to positive numbers and write
it as Vo (2> > 0). But sometimes you don’t want to or can’t restrict the domain.

Another way to express it is Va(z > 0 — 23 > 0).

+xExercise 4.79. Use the universal quantifier to express the fact that the square of any
integer is not zero as long as the integer is not zero.

Answer
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Definition 4.80. The symbol 3 is the existential quantifier, and it is read as “there
exists”, “there is”, “for some”, etc. For instance, 3x means “For some x”. When it precedes
a statement, it means that the statement is true for at least one value of x in the universe.

Example 4.81. Prove that Jz(y/z = 2) is true when the domain is the integers.

Proof. Notice that when = = 4, \/z = /4 = 2, proving the statement. O

*Exercise 4.82. Express the sentence “Some integers are positive” using quantifiers. You
may assume the domain of the variable(s) is Z.

Answer

Sometimes you will see nested quantifiers. Let’s see a few examples.

Example 4.83. Use quantifiers to express the sentence “all positive numbers have a square
root,” where the domain is real numbers.

Solution: We can express this as V(z > 0)Jy(v/z = y).

xEvaluate 4.84. Express the sentence “Some integers are even” using quantifiers. You may
assume the domain of the variable(s) is the integers.

Solution |1 Ix(x is even).

Evaluation

Solution 2: Ix(x/2 € 7.

Evaluation

Solution 3: IxAyx = 24).

Evaluation

Example 4.85. Translate ¥V3d into English.

Solution: It means “for every upside-down A there exists a backwards E.”
This is a geeky math joke that might make sense if you paid attention in calculus
(assuming you ever took calculus, of course). If you don’t get it, don’t worry



Predicates and Quantifiers

about it. Move along. These aren’t the droids you're looking for.

99

+xExercise 4.86. Express the following statement using quantifiers: “Every integer can be
expressed as the sum of two squares.” Assume the domain for all three variables (did you
catch the hint?) is Z.

Answer

*F'ill in the details 4.87. Prove or disprove the statement from the previous example.

Proof: The statement is false. Let x = 3. We need to show that no choice

of will yield 4% + 2?2 = 3. We can restrict ¥ and z to

since the square of a negative integer is the same
as the square of its absolute value. We will do a proof by cases, considering the
possible values of y.

y # 0 since 3 is not

If y =1, we need , which is impossible.

Ify > 2, 4% > 4, so we need ,

Since we have and none of them
work, the statement is false. O

Example 4.88. Prove or disprove that the following statement is true
VneNImeN (n>3—>(n—|—7)2>49—|-m)

Solution: First, you need to convince yourself that if we can always find some
value of m based on a given value of n > 3 such that (n + 7)2 > 49 + m, the
statement is true. Notice that (n + 7)% > 49 + m iff n? + 14n > m. So if we take
m to be any number smaller than n? + 14n, for instance m = n? + 14n — 1, then
the statement is true.

Example 4.89. Prove or disprove that the following statement is equivalent to the statement
from the Example 4.88.

ImeNVREN (n>3= (n+7)%>49+m)

Solution: This is almost the same as the expression from the previous example,
but the Vn € N and 3m € N have been reversed. Does that change the meaning?
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Let’s find out.

The expression in the previous example is saying something like “For any natural
number n, there is some natural number m...” In English, the statement in this
example is saying something like “There exists a natural number m such that
for any natural number n...” Are these different? Indeed. The one from the
previous example lets us pick a value of m based on the value of n. The one from
this example requires that we pick a value of m that will work for all values of n.
Can you see how that is saying something different?

Example 4.90. Prove or disprove that the following statement is true.
Im e NVn eN (n>3—>(n+7)2>49+m)

Solution:  This statement is true. We need there to be some value of m such
that for any n > 3, n? + 14n > m (we worked this out in Example 4.88). Can we
find an m such that m < n?+ 14n for all values of n > 3? Sure. It should be clear
that m = 32 + 14 - 3 < n? + 14n for all values of n > 3.

xExercise 4.91. Find a predicate P(x,y) such that Vz3yP(z,y) and JyVzP(x,y) have
different true values. Justify your answer. (Hint: Think simple. Will something like “x = y”
or “r < y” work if we choose the appropriate domain?)

Answer:

Example 4.92. Let P(z)=“c < 0”. Then —VzP(x) means “it is not the case that all values
of x are negative.” Put more simply, it means “some value of = is not negative”, which we
can write as Jz—P(z).

What we saw in the last example actually holds for any propositional function.
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Theorem 4.93 (DeMorgan’s Laws for quantifiers). If P(x) is a propositional function, then
Ve P(x) = Jz—-P(x), and
—3JxP(z) = Vz—P(z).

Proof:  We will prove the first statement. The proof of the other is very similar.
Notice that =VzP(x) is true if and only if VxP(x) is false. YxP(x) is false if and
only if there is at least one x for which P(x) is false. This is true if and only if
—P(x) is true for some x. But this is exactly the same thing as Jx—P(x), proving
the result. O

Example 4.94. Negate the following expression, but simplify it so it does not contain the —
symbol.
VYn3am(2m = n)

Solution:

—VYnIm(2m =n) = In—-Im(2m =n)
= InVYm—(2m =n)
= dnVm(2m # n)

xExercise 4.95. Answer the following questions about the expression from Example 4.94,
assuming the domain is Z.

(a) Write the expression in English. You can start with a direct translation, but then smooth
it out as much as possible.

Answer

(b) Write the negation of the expression in English. State it as simply as possible.

Answer

(c) What is the truth value of the expression? Prove it.

Answer
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Let’s see how quantifiers connect to algorithms. If you want to determine whether or not
something (e.g. P(z)) is true for all values in a domain (e.g., you want to determine the truth
value of VxP(x)), one method is to simply loop through all of the values and test whether or not
P(zx) is true. If it is false for any value, you know the answer is false. If you test them all and
none of them were false, you know it is true.

Example 4.96. Here is how you might determine if YxP(z) is true or false for the domain
{0,1,2,...,99}:
boolean isTrueForAll() {
for(int i=0;i<100;i++) {
ifC 'P(i) ) Ao
return false;
3
}

return true;

}
Notice the negation in the code—this can trip you up if you aren’t careful.

Example 4.97. Let P(z) and Q(z) be predicates and the domain be {0, 1,2,...,99}. What
is isTrueForA112() determining?

boolean isTrueForAll2() {
for(int i=0;i<100;i++) {
if(C 'P(i) && !'Q(i) )

return false;

}

return true;

Solution: Notice that if both P(i) and Q(i) are false for the same value of 4, it
returns false, and otherwise it returns true. Put another way, it returns true if for
every value of ¢, either P(i) or Q(7) is true. Thus, isTrueForAl12 is determining
the truth value of Vi(P(i) V Q(1)).

+xExercise 4.98. Rewrite the expression ( !'P(i) && 'Q(i) ) from the previous example
so that it uses only one negation.
Answer:
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xExercise 4.99. Let P(z) and Q(x) be predicates and the domain be {0,1,2,...,99}. What
is isTrueForA113() determining?

boolean isTrueForAl113() {

boolean result = true;
for(int i=0;i<100;i++) {
if('P(1)) Ao
result = false;
}
}

if (result==true) {
return true;

}
for(int i=0;i<100;i++) {
if(1QCi)) A
return false;
}
}

return true;

Answer

Example 4.100. Now we are ready for the million dollar question:® Are isTrueForAll2
and isTrueForAll3 determining the same thing?

Solution: At first glance, it looks like they might be. But we need to dig
deeper, and we need to prove one way or the other. To prove it, we would need to
show that these expressions evaluate to the same truth value, regardless of what
P and @ are. To disprove it, we just need to find a P and a @ for which these
expressions have different truth values. But let’s first talk it through to see if we
can figure out which answer seems to be correct.

Vi(P(i) V Q(7)) is saying that for every value of 4, either P(i) or Q(i) has to be
true. ViP(i) V ViQ(7) is saying that either P(i) has to be true for every i, or that
Q(i) has to be true for every i. These sound similar, but not exactly the same,
so we cannot be sure yet. In particular, we cannot jump to the conclusion that
they are not equivalent because we described each with different words. There are
many ways of wording the same concept.

At this point we either need to try to tweak the wording so that we can see that
they are really saying the same thing, or we need to try to convince ourselves they
aren’t. Let’s try the latter.

What if P(7) is always true and Q(i) is always false? Then both statements are
true. But that doesn’t prove that they are always both true, so this doesn’t help.
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Let’s try something else. What if we can find a P(i) and a Q(¢) such that for any
given value of i, we can ensure that either P(i) or Q(4) is true, but also that there
is some value j such that P(j) is false and some value k # j such that Q(k) is
false? Then Vi(P(i)V Q(i)) would be true, but ViP(i) V ViQ() false, so this would
work. But in order to be certain, we have to know that such a P and Q exist.?

What if we let P(i) be “i is even”, Q(i) be “i is odd”, and the universe be Z.
Then ViP(i) = ViQ(:) = F, so ViP(i) V ViQ(i) = F, but Vi(P(i) V Q7)) = T.
Now we have all of the pieces. Let’s put this all together in the form of a proof.

Proof: (that Vi(P(i) v Q(3)) # ViP(i) V ViQ(7))

Let P(i) be “i is even”, Q(i) be “i is odd”, and the universe be Z.
Then Vi(P(i) V Q(i)) is true since every integer is either even or odd.
On the other hand, ViP(i) is false since there are integers that are
not even and ViQ)(i) is false since there are integers that are not odd.
Thus, ViP(i) V ViQ(i) is false. Since they have different truth values,
Vi(P(i) vV Qi) # ViP(i) v ViQ(7) O

“There is no million dollars for answering this question. It’s just an expression.

*Consider this: If I can find an even number that is prime but is not 2, then there would be at least 2 even
primes. That’s great. Unfortunately, I can’t find such a number.
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4.4 Normal Forms

Earlier we saw identities that express logical operators in terms of V, A, and —. It turns out that
even if there isn’t an identity that does it, there is a straightforward technique to convert any
logical expression into one only using V, A, and —. That is the topic of this section.

Definition 4.101. A literal is a boolean variable or its negation.

Definition 4.102. A conjunctive clause is a conjunction of one or more literals.

Example 4.103. Let p, g, and r be boolean variables. Then p, —p, g, —¢q, 7, and —r are all
literals. pAgAr, =pAr, and r A =g A p are all conjunctive clauses.

Definition 4.104. A logical expression is in disjunctive normal form (DNF) (or sum-
of-products expansion) if it is expressed as a disjunction of conjunctive clauses.

Example 4.105. Let p, ¢, and r be boolean variables. Then the following are in disjunctive
normal form:

e (pAgAT)V (=pAT)

e pV(gA-p)V(rA-p)

e rANgADp

These are not in disjunctive normal form.
*p—q

e pA(gVr)

* pV(gA=p)A(rV—q)

Given a truth table for an expression we can create its disjunctive normal form as follows.

Procedure 4.106. This will convert a boolean expression to disjunctive normal form.
1. Create the truth table for the expression.
2. Identify the rows having output T.

3. For each such row, create a conjunctive clause that includes all of the variables which
are true on that row and the negation of all of the variables that are false.

4. Combine all of the conjunctive clauses by disjunctions.
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Example 4.107. Express p @ ¢ in disjunctive normal form.

Solution: The truth table for p @ ¢ is given to the right.

The second row yields conjunctive clause p A —q, and P4 |p®q
. . . . T T F
the third row yields conjunctive clause —p A q. The T F T
disjunction of these is (pA—q)V (—pAgq). Thus, pdqg = 7o T
(PA=g)V(=pAg). 7l F

The previous example is essentially just another proof of the identity that was proven in
Example 4.67.

xExercise 4.108. Express p <> ¢ in disjunctive normal form.

P4

NN
BB B B IS

Example 4.109. Express Z in disjunctive normal form.

S e B B> B B M B I
SRS N B B B> B B
e B B B e B 1
NN TN NN

Solution: Z=(PAgAT)V(PAgGA-T)V(=pAgA—r)V (=pA-gA-—r).

The solution from the previous example can be simplified to Z = (pAq)V (=pA—r). Although
this can be done by applying the logical equivalences we learned about earlier, there are more
sophisticated techniques that can be used to simplify expressions that are in disjunctive normal
form. This is beyond our scope, but you will likely learn more about this when you take a
computer organization class and discuss circuit minimization. The important point I want to
make here is that computing the disjunctive normal form of an expression using the technique
we describe will not always produce the most simple form of the expression. In fact, much of the
time it won’t be.
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xExercise 4.110. Express Y in disjunctive normal form.

ST > B Bl B T
MmN YT
i e B B e e B T
NNSNNYT T

There is another important form that is very similar to disjunctive normal form.

Definition 4.111. A disjunctive clause is a disjunction of one or more literals. A logical
expression is in conjunctive normal form (CNF) (or product-of-sums expansion) if
it is expressed as a conjunction of disjunctive clauses.

There are several methods for converting to conjunctive normal form. They generally involve
using double negation, distributive, and De Morgan’s laws either based on the truth table or
based on the disjunctive normal form. However, we won’t discuss these techniques here. The
main reason to introduce you to these forms is that they each have connections to important
areas of computer science. They are used in circuit design and minimization, artificial intelligence
algorithms, automated theorem proving, and the study of algorithm complexity.
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4.5 Bitwise Operations

In this section we will consider bitwise operations. But first we need to review a few concepts you
are probably already familiar with.

In your programming class you learned that a Boolean variable is one that is either true or
false. You may or may not have learned about the connection between Boolean variables and
bits. Recall that a bit can have the value 0 or 1. A bit can be used to represent a Boolean variable
by assigning 0 to false and 1 to true. Table 4.5 shows the truth tables for the various Boolean
operators that are available in many languages. Notice that they are identical to the operators
we discussed earlier except that we have replaced T'/F with 0/1 and have used the notation from
Java/C/C++ instead of the mathematical notation.

AND | OR | XOR IFF

p q| (p&&q) | (pllg) |P'=q | (p==1¢q)
11 1 1 0 1
10 0 1 1 0
01 0 1 1 0
0 0 0 0 0 1

Table 4.5: Truth tables for the Boolean operators

We don’t usually think about !'= being XOR and == being IFF (or biconditional). We usually
think of them in their more natural interpretation: ‘not equal’ and ‘equal’.

Note: A note of caution: Although Java is a lot like C and C++, how it deals with logical
expressions is very different. Java has an explicit boolean type and you can only use the
logical operators on boolean values. Further, conditional statements in Java require boolean
values. In C and C++, the int type is used as a boolean value, where 0 is false, and anything
else is true. This is very convenient, but can also cause some confusion.

Example 4.112. In C/C++, (5&&6), (5]10), (4!=5) are all true. In Java the first two
statements are illegal.

Now it’s time to extend the concept of Boolean operators to integer data types (including int,
short, long, byte, etc.).

Definition 4.113. A bitwise operation is a boolean operation that operates on the indi-
vidual bits of its argument(s).

Definition 4.114. The compliment or bitwise NOT, usually denoted by ~, just flips each
bit.
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Example 4.115. Assume 10011001 is in binary. Then “10011001=01100110. If this were a
32-bit integer, the answer would be 11111111111111111111111101100110 since the leading
24 bits (which we assume to be 0) would be flipped.

Note: For simplicity, the rest of the examples will assume numbers are represented with 8
bits. The concept is exactly the same regardless of how many bits are used for a particular
data type.

*F'ill in the details 4.116. 255 is 11111111 in binary. “11111111=00000000, which is 0 in
decimal. Therefore, ~255=0.

Similarly, we can see that “240=15 since 240 is in binary, and

= , which is in decimal.

xExercise 4.117. ~11000110=

Definition 4.118. The following are the two-operator bitwise operators.

e The bitwise AND, usually denoted by &, applies N to the corresponding bits of each
argument.

e The bitwise OR, usually denoted by |, applies V to the corresponding bits of each
argument.

e The bitwise XOR, usually denoted by ~, applies @& to the corresponding bits of each
argument.

We will present examples in table form rather than ‘code form’ since it is much easier to see
what is going on when the bits are lined up.

Example 4.119. 01011101 01011101 01011101
& 11010100 11010100 ~ 11010100
01010100 11011101 10001001

Note: [t is important to remember that & and && are not the same thing! The same holds for
| and ||. It is equally important to remember that ~ does not mean exponentiation in most
programming languages.
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xExercise 4.120. 11110000 11110000 11110000
& 11001100 11001100 = 11001100

Note: A final reminder: It is important to understand the difference between the Boolean
operators and the bitwise operators.
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4.6 Problems

Problem 4.1. Draw a truth table to represent the following.

(a) =pVgq

(b) p—q)V-p

(c) (pA—g)Vr

d) (Ve A=lpVve)Vr
() (pV-r)Ag

(f) P& a)A(gVr)

Problem 4.2. Give 2 different proofs that [(p V q) A —p] — ¢ is a tautology.

Problem 4.3. Prove —(p <+ ¢) = p ® ¢ without using truth tables.

Problem 4.4. Find the disjunctive normal form for each of the expressions from Problem 4.1
Problem 4.5. Express pV q V r using only A and — .

Problem 4.6. The NAND of p and ¢, denoted by plg, is the proposition “not both p and ¢”.
The NAND of p and q is false when p and ¢ are both true and true otherwise.

(a) Draw a truth table for NAND
(

)
b) Express p|q using V, A, and/or — (you may not need all of them).
(c) Express p A g using only |.

(d) Express —p V ¢ using only |.

Problem 4.7. The NOR of p and ¢, denoted by p | g, is the proposition “neither p nor ¢”. The
NOR of p and ¢ is true when p and ¢ are both false and false otherwise. Express each of the
following using only the NOR, operator.

Draw a truth table for |

(a)
(b) Express p | ¢ using V, A, and/or = (you may not need all of them).
(c) Express p A q using only |.

(d) Express —p V ¢ using only |.

Problem 4.8. A set of logical operators is functionally complete if any possible operator can
be implemented using only operators from that set. It turns out that {—,A} is functionally
complete. So is {—,V}. To show that a set if functionally complete, all one needs to do is show
how to implement all of the operators from another functionally complete set. Given this,

(a) Show that {|} is functionally complete. (Hint: Since {—, A} is functionally complete, one way
is to show how to implement both A and — using just |.)

(b) Show that {]} is functionally complete.
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Problem 4.9. Write each of the following expressions so that negations are only applied to
propositional functions (and not quantifiers or connectives).

(a) ~Vzdy-P(z,y)

(b) =(VaxIyP(x,y) A Jx—VyP(x,y))

(c) ~Ve(JyP(z,y) VVyQ(z,y))

(d) =Vz—-IJy(=VzP(x,z) = 32Q(z,y, 2))

(e) =Ix(=Vy[Iz(P(y,z,2) AN P(y, z,2) A\ P(x,y,2))] V IzQ(x, 2))

Problem 4.10. Let P(z,y)="“z likes y”, where the universe of discourse for x and y is the set of
all people. Translate each of the following into English, smoothing them out as much as possible.
Then give the truth value of each.

(a) VavyP(a,y)
(b) VaIyP(x,y)
(¢) Vy3xP(x,y)

)

)

)

(d) VaP(z, Raymond)
(e) ~VaVyP(z,y)

(f) Va-VyP(z,y)

() Va-Vy-P(z,y)

Problem 4.11. Let P(z,y, z)="“c% 4+ y?> = 2%”, where the universe of discourse for all variables
is the set of integers. What are the truth values of each of the following?

Problem 4.12. Write each of the following sentences using quantifiers and propositional func-
tions. Define propositional functions as necessary (e.g. Let D(z) be the proposition ‘@ plays disc
golf.”)

(a) All disc golfers play ultimate Frisbee.
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(b) If all students in my class do their homework, then some of the students will pass.

c¢) If none of the students in my class study, then all of the students in my class will fail.

(
(d) Not everybody knows how to throw a Frisbee 300 feet.

e) Some people like ice cream, and some people like cake, but everybody needs to drink water.

(
(

(g) Everybody is loved by somebody.
(

h) Not everybody is loved by everybody.

)

)

)

)

) Everybody loves somebody.

)

)

(i) Nobody is loved by everybody.
)

(j) You can’t please all of the people all of the time, but you can please some of the people some
of the time.

(k) If only somebody would give me some money, I would buy a new house.
(1) Nobody loves me, everybody hates me, I'm going to eat some worms.
(m) Every rose has its thorn, and every night has its dawn.

(n) No one ever is to blame.

Problem 4.13. Express the following phrase using quantifiers. “There is some constant ¢ such
that f(x) is no greater than c- g(x) for all z > z( for some constant zy.” Your solution should
contain no English words.

Problem 4.14. Consider the following expression:
Ve>036>0Vz(0 < |z — | < d — |f(z) — L| < e).
(a) Express it in English. Be as concise as possible.

(b) (Difficult if you have not had calculus.) This is the definition of something. What is it?

Problem 4.15. You are helping a friend debug the code below. He tells you “The code in the
if statement never executes. I have tried it for x=2, x=4, and even x=-1, and it never gets to the
code inside the if statement.”

if ((x%2==0 && x<0) || '(x%2==0 || x<0)) {

// Do something.
}

(a) Is he correct that the code inside the if statement does not execute for his chosen values?
Justify your answer.

(b) Under what conditions, if any, will the code in the if statement execute? Be specific and
complete.

Problem 4.16. Simplify the following code as much as possible:

if (x<=0 && x>0) A
doSomething () ;

} else {
doAnotherThing () ;

}
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Problem 4.17. Consider the following code.

boolean notBothZero(int x, int y) {
if (1 (x==0 && y==0)) {
return true;
} else {
return false;
}
}
boolean unknownl(int x, int y) {
if(x!=0 && y'=0) {
return true;
} else {
return false;

}
}
boolean unknown2(int x, int y) {
if(xt=0 || y!=0) {
return true;
} else {
return false;
}
}

(a) Is unknownl equivalent to notBothZero? Prove or disprove it.
(b) Is unknown2 equivalent to notBothZero? Prove or disprove it.

(¢) Are unknownl and unknown2 equivalent to each other? Prove or disprove it.

Problem 4.18. Simplify the following code as much as possible. (It can be simplified into a
single if statement that is about as complex as the original outer if statement).

if ( ('x.size(D<=0 && x.get(0)!=11) || x.size()>0 ) {
if ( !'(x.get(0)==11 && (x.size()>13 || x.size()<13) )
&% (x.size()>0 || x.size()==13) ) {

// Do a few things.
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Problem 4.19. The following method returns true if and only if none of the entries of the array
are 0:

boolean noZeroElements(int[] a, int n) {
for(int i=0;i<n;i++) {
if(ali] == 0 )
return false;
}
return true;
}
The two methods below implement this idea for two arrays. Assume listl and list2 have
the same size for both of these methods.

boolean unknownl(int[] 1listl, int[] 1list2, int n) {
for(int i=0;i<n;i++) {
if( list1[il==0 && 1list2[il==0 )
return false;
}
return true;

}

boolean unknown2(int[] 1listl, int[] 1list2, int n) {
if(noZeroElements(listl, n)) {
return true;
} else if(noZeroElements(list2, n) {
return true;
} else {
return false;
}
}

(a) What is unknown1 determining? (Give answer in terms of 1istl and 1list2 and the appro-
priate quantifier(s).)

(b) What is unknown2 determining? (Give answer in terms of 1listl and 1list2 and the appro-
priate quantifier(s).)

(¢) Prove or disprove that unknownl and unknown2 are determining the same thing.
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Chapter 5

Sets, Functions, and Relations

5.1 Sets

Definition 5.1. A set is an unordered collection of objects. These objects are called the
elements of the set. If a belongs to the set A, then we write a € A, read “a is an element
of A.” If a does not belong to the set A, we write a € A, read “a is not an element of A.”
Generally speaking, repeated elements in a set are ignored.

Definition 5.2. The number of elements in a set A, also known as the the cardinality of

A, will be denoted by card (A) or |A|. If the set A has infinitely many elements, we write
|A| = oo.

Example 5.3. Let D = {0,1,2,3,4,5,6,7,8,9} be the set of the ten decimal digits. Then
4 € D but 11 ¢ D. Also, |D| = 10.

Notice that the elements in a set are listed between curly braces. You should do the same
when you specify the elements of a set.

xExercise 5.4. What is the set of prime numbers less than 107

Answer

Example 5.5. The sets {1,2,3}, {3,2,1}, and {1,1,1,2,2,3} actually represent the same
set since repeated values are ignored and the order elements are listed does not matter. The
cardinality of each of these sets is 3.

Definition 5.6. We say two sets are equal if they contain the same elements. That is
Ve(x € A+ x € B). If A and B are equal sets, we write A = B.

117
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Note: We will normally denote sets by capital letters, say A, B,S,N, etc. Elements will be
denoted by lowercase letters, say a,b,w,r, etc.

~Exercise 5.7. Let A = {1,2,3,4,5,6}, B=1{1,2,3,4,5,4,3,2,1}, and C = {6, 3,4, 5,1, 3,2}.
Then |A| = , |B| = ,and |C| =

Which of A, B, and C represent the same sets?

Definition 5.8. The following notation is pretty standard, and we will follow it in this book.

N=1{0,1,2,3,...} the set of natural numbers.
Z={..—2,—-1,0,1,2,...} the set of integers.

7zt =1{1,2,3,...} the set of positive integers.
Z-={-1,-2,-3,...} the set of negative integers.
Q the rational numbers.

R the real numbers.

C the complex numbers.
o=} the empty set or null set.

Note: There is no universal agreement of the definition of N. Although here it is defined as
{0,1,2,3,...}, it is sometimes defined as N = Z*. The only difference is whether or not 0 is
included. I prefer the definition given here because then we have a notation for the positive
integers () as well as the non-negative integers (N).

Example 5.9. Notice that [N| = |Z| = |R| = co. But this may be a bit misleading. Do all
of these sets have the same number of elements? Believe it or not, it turns out that N and Z
do, but that R has many more elements than both of these. If it seems strange to talk about
whether or not two infinite sets have the same number of elements, don’t worry too much
about it. We probably won’t bring it up again.

xExercise 5.10. (a) |C| = ,(b) |ZT| = , (¢) 9] =

Example 5.11. Let S be the set of the squares of integers. We can express this as S =
{n%n € Z} or S = {n? : n € Z}. We call this set builder notation. We read the : or | as “such
that.” Thus, S is the set containing “numbers of the form n? such that n is an integer.”
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Example 5.12. Use set builder notation to express C, the set of complex numbers.

Solution: C={a+bi:a,becR}.

*Exercise 5.13. Use set builder notation to express the set of even integers.

Answer

xExercise 5.14. Use set builder notation to express QQ, the set of all rational numbers.

Answer

Definition 5.15. If every element in A is also in B, we say that A is a subset of B and
we write this as A C B. If A C B and there is some x € B such that x ¢ A, then we say
A is a proper subset of B, denoting it by A C B.

If there is some x € A such that x & B, then A is not a subset of B, which we write as
A< B.

Note: Some authors use C to mean subset without necessarily implying it is a proper subset.
Sometimes you will need to consider the context in order to interpret it correctly.

Example 5.16. Let S = {1,2,...,20}, that is, the set of integers between 1 and 20, inclusive.
Let E = {2,4,6,...,20}, the set of all even integers between 2 and 20, inclusive. Notice that
ECS. Let P={2,3,5,7,11,13,17,19}, the set of primes less than 20. Then P C S.

*xExercise 5.17. Let S = {n?n € Z} and A = {1,4,9,16}. Answer each of the following,
including a brief justification.

(a) s AC S?

(b) Is A C S?

(c) Is S C 87

(d) Is S c S?

(e) Is S C A?
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xExercise 5.18. Let A be the set of integers divisible by 6, B be the set of integers divisible
by 2, and C be the set of integers divisible by 3. Answer each of the following, giving a brief
justification.

(a) Is AC B?

(b) Is AC C?

(c) Is BC A?

(d) Is BC C?

(e) IsC C A?

(f) Is C C B?

Example 5.19. The set
S = {Roxan, Jacquelin, Sean, Fatimah, Wakeelah, Ashley, Ruben, Leslie, Madeline }

is the set of students in a particular course. This set can be split into two subsets: the set
F = {Roxan, Jacquelin, Fatimah, Wakeelah, Ashley, Madeline } of females in the class, and the
set M = {Sean, Ruben, Leslie} of males in the class. Thus we have F' C S and M C S. Notice
that it is not true that ' C M or that M C F.

Example 5.20. Find all the subsets of {a,b, c}.
Solution: They are @, {a}, {b},{c}, {a,b},{d,c},{a,c}, and {a,b,c}.

Notice that there are 8 subsets. Also notice that 8 = 23. As we will see shortly, that is not a
coincidence.

Notice that we wrote @ and not {@} in the previous example. It turns out that & # {&}. &
is the empty set—that is, the set that has no elements. {@} is the set containing the empty set.
Thus, {@} is a set containing the single element &. You can use either & or {} to denote the
empty set, but not {@}.
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xExercise 5.21. Find all the subsets of {a,b,c,d}.

Definition 5.22. The power set of a set is the set of all subsets of a set. The power set of
a set A is denoted by P(A).

Example 5.23. If A = {a,b,c}, example 5.20 implies that P(A) = {&, {a}, {b},{c},{a, b},
{b,c},{a,c},{a,b,c}}. Notice that the solution is a set, the elements of which are also sets.

An incorrect answer would be {9, a,b,c,{a,b},{b,c},{a,c},{a,b,c}}. This is incorrect
because a is not the same thing as {a} (the set containing a). {a} € P(A), but a ¢ P(A).
This is a subtle but important distinction.

xExercise 5.24. Find P({a,b,c,d}).
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Theorem 5.25. Let A be a set with n elements. Then |P(A)| = 2".

Proof: We use induction® and the idea from the solution to Exercise 5.21.
Clearly if |A| =1, A has 2' = 2 subsets: @ and A itself.

Assume every set with n — 1 elements has 2"~ ' subsets. Let A be a set with n
elements. Choose some x € A. Every subset of A either contains x or it doesn’t.
Those that do not contain x are subsets of A\ {z}. Since A\ {z} has n — 1
elements, the induction hypothesis implies that it has 2"~ subsets. Every subset
that does contain x corresponds to one of the subsets of A\ {x} with the element
x added. That is, for each subset S C A\{zx}, SU{x} is a subset of A containing
x. Clearly there are 2" such new subsets. Since this accounts for all subsets of
A, A has 271 4271 = 2" subsets. O

“We will cover induction more fully and formally later. But since this use of induction is pretty intuitive,
especially in light of Example 5.21, it serves as a useful foreshadowing of things to come.

xExercise 5.26. Let A be a set with 4 elements.

(a) |P(A)] =

(b) [P(P(A))] =

(¢) [P(P(P(A)))] =

*Exercise 5.27. If one element is added to a finite set A, how much larger is the power
set of A after the element is added (relative to the size of the power set before it is added)?
Explain your answer.

Answer




Set Operations 123

5.2 Set Operations

We can obtain new sets by performing operations on other sets. In this section we discuss the
common set operations. Venn diagrams are often used as a pictorial representation of the rela-
tionships between sets. We provide Venn diagrams to help visualize the set operations. In our
Venn diagrams, the region(s) in the darker color represent the elements of the set of interest.

Definition 5.28.

The union of two sets A and B is the set containing
elements from either A or B. More formally,

AUB
AUB={z:z€ Aor z € B}.

Notice that in this case the or is an inclusive or. That
18, x can be in A, or it can be in B, or it can be in both.

Example 5.29. Let A = {1,2,3,4,5,6}, and B = {1,3,5,7}. Then AUB = {1,2,3,4,5,6,7}.

xExercise 5.30. Let A be the set of even integers and B be the set of odd integers. Then

AU B=

Definition 5.31.

The intersection of two sets A and B is the set contain-
ing elements that are in both A and B. More formally, ANB

ANB={z:2€ A and x € B}.

Example 5.32. Let A ={1,2,3,4,5,6}, and B = {1,3,5,7,9}. Then AN B = {1,3,5}.

*Exercise 5.33. Let A be the set of even integers and B be the set of odd integers. Then

ANB=
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Definition 5.34.

The difference (or set-difference) of sets A and B
is the set containing elements from A that are not in B.
More formally,

A\ B
A\B={z:z€ A and x ¢ B}.

The set difference of A and B is sometimes denoted by
A— B.

Example 5.35. Let A ={1,2,3,4,5,6}, and B = {1,3,5,7,9}. Then A\ B = {2,4,6} and
B\ A={7,9).

xExercise 5.36. Let A be the set of even integers and B be the set of odd integers. Then

A\ B= and B\ A=

Definition 5.37.

Let A CU. The complement of A with respect to U is
Just the set difference U \ A. More formally,

|

A={zeU:z¢g A} =U\ A

In words, A is the set of everything not in A. Other
common notations for set complement include A€ and A’.

Example 5.38. Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits
and let A = {0,2,4,6,8} C U be the set of even digits. Then A = {1,3,5,7,9} is the set of
odd digits.

*Exercise 5.39. Let A be the set of even integers and B be the set of odd integers, and let the

universal set be U = Z. Then A= and B=

Note: Often the set U, which is called the universe or universal set, is implied and we
just use A to denote the complement. Generally speaking, we will follow this convention here.
Further, when talking about several sets, we will assume they have the same universal set
unless otherwise specified.

It should not be too difficult to convince yourself that the following theorem is true.
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Theorem 5.40. Let A be a subset of some universal set U. Then

ANA = o, and
AUA = U.

The various intersecting regions for two and three sets can be seen in Figures 5.1 and 5.2.

(AuBUCQC)

Figure 5.1: Venn diagram for two sets.

Figure 5.2: Venn diagram for three sets.

Definition 5.41. Two sets A and B are disjoint or mutually exclusive if AN B = &.
That is, they have no elements in common.

Example 5.42. Let A be the set of prime numbers, B be the set of perfect squares, and C
be the set of even numbers. Then A and B are clearly disjoint since if a number is a perfect
square, it cannot possibly be prime (although 0 and 1 are not prime for different reasons than
the rest of the elements of B). On the other hand, A and C are not disjoint since they both
contain 2, and B and C' are not disjoint because they both contain 4.

*Exercise 5.43. Let A be the set of even integers and B be the set of odd integers. Are A
and B disjoint? Explain.

Answer

Set identities can be used to show that two sets are the same. Table 5.1 gives some of the
most common set identities. In these identities, U is the universal set. We won’t provide proofs
for most of these, but we will present a few examples and a technique that will allow you to verify
that they are correct.

These identities may look somewhat familiar. They are essentially the same as the logical
equivalences presented in Table 4.3. In fact, if we equate T to U, F' to @, V to U, A to N, and — to
-, the laws are identical. This is because logic operations and sets are both what we call Boolean
algebras. We won’t go into detail about this connection, but in case you run into the concept in
the future, you heard it here first!

The following theorem can be used to prove set identities.
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‘ Name ‘ Identity ‘
commutativity AUB=BUA
ANB=BnNA
associativity AU(BuUC)=(AuB)UC
AN(BNC)=(AnB)NC
distributive AN(BUC)=(ANB)U(ANC)
AU(BNC)=(AUuB)N(AUQO)
identity Aug=A
AnNU=A
complement AUA=U
ANA=9o
domination AuU =U
AN =9
idempotent AUA=A
ANA=A
complementation @ =A
DeMorgan's AUB=ANB
ANB=AUB
absorption AU(ANB)=A
AN(AuB)=A

Table 5.1: Set Identities

Theorem 5.44. Two sets A and B are equal if and only if A C B and B C A.

Let’s see this theorem in action.

Example 5.45. Prove that A\ B= AN B.

Proof: Let x € A\ B. Then by definition of difference, z € A and = ¢ B.
But if # ¢ B, then € B by definition of complement. Since x € A and = € B,
x € AN B by definition of intersection. Since whenever A\ B, z € AN B, we have
shown that A\ B C AN B.

Now assume that 2 € ANB. Then x € A and = € B by definition of intersection.
By definition of complement, x ¢ B. But if xt € A and = ¢ B, then z € A\ B
by definition of difference. Since whenever # € AN B, v € A\ B, we have that

ANBC A\ B.
Since we have shown that A\ B C ANB and that ANB C A\ B, by Theorem 5.44
A\B=ANB. O

That was the long, drawn-out version of the proof. The purpose of all of the detail is to
make the technique clear. Here is a proof without any extraneous details.

Proof: We will prove this by showing set containment both ways.
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Let x € A\ B. Then v € A and x ¢ B. This implies that x € B. Therefore
r € ANB. Since A\ B impliesz € ANB, A\ BC ANB.

Now assume that + € AN B. Then z € A and € B. Then x ¢ B, and therefore
x € A\ B. Since z € AN B implies z € A\ B, ANB C A\ B. O

The proofs in the previous example are called set containment proofs since we showed set
containment both ways. The technique is pretty straightforward: Theorem 5.44 tells us that if
X CY and Y C X, then X =Y. Thus, to prove X =Y, we just need to show that X C Y and
Y C X. But how do we show that one set is a subset of another? This is easy: To show that
X CY, we show that every element from X is also in Y. In other words, we assume that z € X
and use definitions and logic to show that x € Y. Assuming we do not use any special properties
about x other than the fact that x € X, then z is an arbitrary element from X, so this shows
that X C Y. Showing that Y C X uses exactly the same technique.

Note: Be careful. To prove that X =Y, you generally need to prove two things: X CY and
Y C X. Do not forget to do both. On the other hand, if you are asked to prove that X CY,
you do not need to (and should not) show that Y C X.

Let’s see another example of this type of proof. This proof will provide a few more details
than necessary in order to further explain the technique.

Theorem 5.46. Prove the first De Morgan’s Laws: Given sets A and B, (AU B) = AN B.

Proof: Letx € (AUB). Then z ¢ AU B (by definition of complement). Thus
r & A and x & B (by definition of union), which is the same thing as x € A
and x € B (by definition of complement). But then we have that x € AN B (by
definition of union). Notice that x was an arbitrary element from (AU B), and

we showed that x € AN B. Therefore, every element in (AU B) is also in AN B.

In other words, (AU B) C AN B.

Now, let x € ANB. Then x € A and © € B. This means that x ¢ A and © ¢ B

which is the same as x ¢ AU B. But this last statement asserts that x € (AU B).

Hence ANB C (AU B).

Since we have shown that the two sets contain each other, they are equal by The-
orem 9.44. O

You have already seen a few correct ways to prove that A\ B = AN B. Can you spot the
problem(s) in the following ‘proofs’ of this? These proofs use the alternative notation of A — B
for set difference.
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xEvaluate 5.47. Use a set containment proof to prove that if A and B are sets, then
A—-B=ANB.

Proof |1 Assume x € {A —-B} sox € A and xis not € B. This means x € A and
B Therefore x c ANB. Thus A-B=AnB

Evaluation

Proot 2 B is the other part of the universal that does Nnot contain any
part of B. AUB means all intersection part of A and the universal that
does not contain any part of B Therefore it returns all elements that
are in A But not in B which are A —B. Thus, A —B =ANB.

Evaluation

Proot 3: To prove that A —B = ANB, first let x € A —B. By definition of
the difference of sets, this means that x is an element of A that is not
in B, or in other words, x € A and x € B. This is the same as x € ANB, thus
Proving that A —B C ANB.

Now let x € ANB. This means that x € A and x ¢ B, so it is in A, But Nnot in
B, which is what we just proved in the previous statement, thus proving
that A -B=ANB

Evaluation

Sometimes we can do a set containment proof in one step instead of two. This only works if
every step of the proof is reversible. We illustrate this idea next. (Here, the < means “if and
only if”. Although it looks a lot like it, it is not the logical biconditional operator.)
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Example 5.48. Prove that A\ (BUC) = (A\ B)N(A\ ().
Proof: We have

r€A\(BUC) & ze€ANnz g (BVQ)
& (@ed) A (wgB) A (2€C))
& (x€eANzEB) AN (z€eANzgl)
& (reA\B) A (zeA\QO)
& ze(A\B)N(A\CO).

g

Note: The proof in the previous example works because every step is reversible. You can only
write something like ‘a < B’ in a proof if « — B and B — « are both true. When attempting
to shortcut proofs with this technique, make sure each step truly is reversible.

*Fill in the details 5.49. Use a set containment proof to show that
(AUB)NC=(AnC)u(BNQO).

Solution: We have,

ce(AuB)NC
& ze€(AUB)A by definition of intersection
& (xeAvV YAz el by
& (reANxzel)V by
= V(ze BNCO) by
& ze(AnC)u(BNO). by

Example 5.50. In Java, the TreeSet class is one implementation of a set that has several
methods with perhaps unfamiliar names, but they do what should be familiar things. Let’s
discuss a few of them.” Let A and B be TreeSets.

(a) The method retainAll(TreeSet other) “retains only the elements in this TreeSet that
are contained in the other TreeSet. In other words, removes from this TreeSet all of its el-
ements that are not contained in other.” It is not too difficult to see that A.retainAll (B)
is computing AN B.°

(b) The method boolean containsAll(TreeSet other) “returns true if this set contains
all of the elements of other (and false otherwise).” Thus, A.containsAl1(B) returns
true iff B C A.

129
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(c) Even without documentation, it seems likely that A.size() is determining |A].

(d) It is also seems likely that A.isEmpty () is determining if A = (.

“The method signatures and documentation have been modified from the official definition so we can focus
on the point at hand.

Technically it is doing more than that. It is storing the result in A. So it is like it is doing A = AN B,
where = here means assignment, not equals.

Sometimes you need to find the number of elements in the union of several sets. This is easy
if the sets do not intersect. If they do intersect, more care is needed to make sure no elements are
missed or counted more than once. In the following examples we will use Venn diagrams to help us
do this correctly. Later, we will learn about a more powerful tool to do this—inclusion-exclusion.

Example 5.51. Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both
smoke and chew. How many among the 40 neither smoke nor chew?

Solution: We fill up the Venn diagram below as follows. Since |[Smoke N
Chew| = 10, we put a 10 in the intersection. Then we put 28 — 10 = 18 in
the part that Smoke does not overlap Chew and 16 — 10 = 6 in the part of
Chew that does not overlap Smoke. We have accounted for 10 + 18 + 6 = 34
people that are in at least one of the sets. The remaining 40 — 34 = 6 people
outside these sets don’t smoke or chew (and probably don’t date girls who do).

Smoke Chew

We should note that we truly hope that these numbers are not representative of
the number of people who smoke and/or chew in real life. It’s bad for you. Don’t
do it. Really.
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xExercise 5.52. In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak
French. It is known that 5 speak English and Spanish, 7 Spanish and French, and 5 English
and French. The number of people speaking all three languages is 3. How many people speak
at least one of these languages?

Definition 5.53. The Cartesian product of sets A and B is the set A x B = {(a,b)|a €
ANb e B}. In other words, it is the set of all ordered pairs of elements from A and B.

Example 5.54. If A ={1,2,3} and B = {a, b}, then
A X B = {(17a)7 (17 b)’ (27 a)7 (27 b)7 (37 a)? (37 b)}? and

B x A ={(a,1),(a,2),(a,3), (b, 1), (b,2), (b,3)}.
Notice that A x B # B x A. If A # B, this is always the case.

xExercise 5.55. Let A ={1,2,3,4}, and B = {3}. Compute A x B.

AXx B=

Definition 5.56. If A is a set, then A2=A x A, and A" = A x A"1,

Example 5.57. If B = {a,b}then
B* = {(a7 CL), (a7 b)? (b7 CL), (b7 b)}7 and

B3 = {(a,a,a),(a,b,a),(b,a,a),(bd,a),(a,a,b),(a,b,b),(b,a,b), (b b b)}
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xExercise 5.58. Let A = {0,1}. Find A% and A3.

A% =

A3 =

It shouldn’t be too difficult to convince yourself of the following.

Theorem 5.59. If A and B are finite sets with |A| = n and |B| = m, then |A X B| =n-m.

Example 5.60. Let A and B be finite sets with |A| = 100 and |B| = 5. Then |A x B| =
100 * 5 = 500, |A?| = 100 * 100 = 10,000, and |B*| = 5* = 625.

xExercise 5.61. Let A, B, and C be sets with |A| = 10, |B| = 50, and |C| = 20. Determine
the following

(a) |A x B| =

(b) |4 % C| =

() |42 =

(d) [B% =

(e) [Ax BxC(C|=
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xEvaluate 5.62. If A x B = @&, what can we conclude about A and B?

Solution I Assume A and B are not empty. We know the Cartesian prod-
uct of A and B, denoted By A xB | is the set of all ordered pairs (a3,8), where
a € AandrcbB Therefore, we can conclude that our assumption was in-
correct Because if each set is NoOt empty, (8,8) is in the cross product, But
A xB =g so at least one of the sets must Be empty.

Evaluation

Solution 2: Notice that i A =g and B = g, A xB = @ Therefore, i
AxB=g then A=gand B =g

Evaluation

Solution 3: We can conclude that Both A and B are empty. [l prove it By
contradiction. Assume that A x B = g, But that it is not the case that
BOth A and B are empty. Then neither A nor B is empty. But then there is
some a € A and some B € B and (3,B) € A x B, which implies that A xB # &
This contradicts our assumption. Therefore Both A and B are empty.

Evaluation

Solution 4: At least one of A or B is empty By contradiction. Assume that
A xB = g But that it is noOt the case that at least one of A or B is empty.
Then neither A nor B is empty. Then there is some a € A and some B € B,
But then (3,8) € A x B, which implies that A x B # & This contradicts our
assumption. Therefore at least one of A or B is emvipty.

Evaluation
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5.3 Functions

This section is meant as a review of what you hopefully already learned in an earlier course,
probably in high school. Thus, it is pretty brief. But we do try to cover all of the important
material and provide enough examples to illustrate the concepts.

Definition 5.63. Let A and B be sets. Then A function f from A to B assigns to each
element of A exactly one element from B. We write f : A — B if f is a function from A
to B. If a € A and f assigns to a the value b € B, we write f(a) =b. We also say that f
maps a to b.

If A = B, we sometimes say f is a function on A.

Example 5.64. If A = B = N, we can define a function f : A — B by f(z) = 22. Then

f(1) =1, f(2) =4, f(3) =9, etc. Although f(x) is defined for all z € A, not every b € B is
mapped to by f. For instance, there is no a € A for which f(a) = 5.

Example 5.65. Notice that we can define f(z) = /x on the positive real numbers, but
we cannot define it on the positive integers since v/2 is not an integer. Similarly, since
V-1 =1 ¢ R, we cannot define it on the real numbers. We can let it be a function from
R to C, though. But we won’t because this course is complex enough even without complex
numbers.

Definition 5.66. Let f be a function from A to B.
1. We call A the domain of f.
2. We call B the codomain of f.

3. The range of f is the set {b|f(a) = b for some a € A}. In other words the range is
the subset of B that are actually mapped to by f.

Example 5.67. Let A= B =N and f: A — B be defined by f(z) = 22. Then the domain
and codomain of f are both N, and the range is {a?|a € N}, which is a proper subset of the
codomain.

Figure 5.3 gives a pictorial representation of a function. Notice that in this example every
element in A has precisely one arrow going from it. So if I ask “what is f(z)?”, there is always
an answer and it is always unique. On the other hand, there is a point in B that has two arrows
going to it and several points that have no arrows going to them. This is fine.

Figure 5.4 does not represent a function since there are several points in A which have two
arrows going from them and several with no arrows at all. The problem here is that if I ask “what
is f(x)?”, sometimes there is no answer and sometimes there are multiple answers. Thus, f would
not represent a function.
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Figure 5.3: A pictorial repre-
sentation of a function from A to
B.

Figure 5.4: This picture does
not represent a function.

Note: In figures 5.3 and 5.4, the dots represent all of the elements of the sets A and B and
the gray ovals are mainly there to help identify which dots are in which set. However, in these
sorts of diagrams it is more common for the dots to represent only some of the elements. You
need to let the context help you determine how to properly interpret these diagrams.

Example 5.68. Give a formal definition of a function that assigns to an age the number of
complete decades someone of that age has lived. For instance, f(34) = 3 and f(5) = 0. Be
sure to indicate what the domain and codomain are.

Solution: It isn’t hard to see that the domain and codomain are both N. Thus
we want a function f : N — N. One way to defines f is by f(z) = [z/10].

*Exercise 5.69. Give a formal definition of a function that returns the parity of an integer.
That is, it returns 0 for even numbers and 1 for odd numbers. Be sure to indicate what the
domain and codomain are.

Answer

Definition 5.70. Let f : A — B be a function.

e f is said to be injective or one-to-one if and only if f(a) = f(b) implies that a = b.
In other words, f maps every element of A to a different element of B.

e f is said to be surjective or onto if and only if for every b € B, there exists some
a € A such that f(a) =b. In other words, every element in B gets mapped to by some
element in A.

e f is said to be bijective or a one-to-one correspondence if it is both injective and
surjective.
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Figure 5.5: A pictorial repre-
sentation of a one-to-one func-
tion.

Figure 5.6: A pictorial repre- Figure 5.7: A pictorial repre-
sentation of an onto function. sentation of an bijective function.

Procedure 5.71. To show that a function f is one-to-one, you just need to show that
whenever f(a) = f(b), then a = b.

Example 5.72. Let f(x) = 2x — 3 be a function on the integers. Show that f is one-to-one.

Solution: Let a,b € Z and assume that f(a) = f(b). Then 2a —3 = 2b — 3.
Adding 3 to both sides, we get 2a = 2b. Dividing both sides by two, we obtain
a = b. Therefore, f(x) = 2x — 3 is one-to-one.

*Question 5.73. Previously we mentioned that ‘working both sides’ was not an appropriate
proof technique. Why is it O.K. in the previous example?

Answer

xExercise 5.74. Prove that f(x) = 5z is one-to-one over the real numbers.

Proof

Procedure 5.75. To show that a function f is not one-to-one, we simply need to find two
values a # b in the domain such that f(a) = f(b). That is, we just need to show that there
are two different numbers in the domain that are mapped to the same value in the codomain.
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Example 5.76. Let f(x) = 22 be a function on the integers. Show that f is not one-to-one.

Solution: Notice that f(—1) = f(1) = 1. Thus, f(x) is not one-to-one.

xExercise 5.77. Let f(z) = [z] be a function on R. Prove that f is not one-to-one.

Proof

Procedure 5.78. To show that a function f is onto, we need to show that for an arbitrary

b € B, there is some a € A such that f(a) = b. That is, show that every value in B is
mapped to by f.

Example 5.79. Let f(x) = 23 be a function on the real numbers. Show that f is onto.

Solution: Let b € R. Then f (%) = (%)3 = b3/3 = b. Since every b € R is
mapped to (from v/b), f is onto.

xExercise 5.80. Let f(z) = 2x + 1 be a function on R. Show that f is onto.

Proof

Procedure 5.81. To show that a function f is not onto, we just need to find some b € B

such that there is no a € A with f(a) = b. In other words, we just need to find one value
that isn’t mapped to by f.

Example 5.82. Let f(z) = 23 be a function on the integers. Show that f is not onto.

Solution: There is no integer a such that a® = 2. In other words, 2 is not
mapped to. Thus, f(x) is not onto.
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xExercise 5.83. Let f(z) = [z] be a function on R. Prove that f is not onto.

Proof

It is important to remember that whether or not a function is one-to-one or onto might depend
on the domain/codomain over which the function is defined. For instance, notice that in the last
two examples we used the same function but on different domains/codomains. In one case the
function was onto, and in the other case it wasn’t.

xExercise 5.84. Consider the function f(z) = 22.

2

(a) Prove or disprove that f(z) = x* is one-to-one on Z.

Answer

b) Prove or disprove that f(z) = 22 is one-to-one on R.
( p

Answer

2

(c) Prove or disprove that f(x) = z* is one-to-one on N.

Answer
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xExercise 5.85. Determine which of the following functions from Z to Z is one-to-one and /or
onto. Prove your answers.

(a) fle)=a+2

Answer

(b) g(x) = 2?

Answer

(c) h(z) =2z

Answer

(d) r(z) = [2/2]

Answer

The functions in the previous exercise were specifically chosen to demonstrate that all four
possibilities of being or not being one-to-one and onto (one-to-one and onto, one-to-one and not
onto, not one-to-one but onto, and not one-to-one or onto) are possible.

The following theorem should come as no surprise if you take a few minutes to think about it
(and you should take a few minutes to think about it until you are convinced it is correct).
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Theorem 5.86. Let f: A — B be a function, and let A and B be finite.
1. If f is one-to-one, then |A| < |B).
2. If f is onto, then |A| > |B].

3. If f is bijective, then |A| = |B|.

*Exercise 5.87. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample.

(a) If f: A — B is onto, then the domain and range are not only the same size, but they
are the same set.

(b) __If f: A— A, then f must be one-to-one and onto.

(¢) __If f: A— B is both one-to-one and onto, then A and B have the same number of
elements.

(d) ___Let f(1) =2and f(1) = 3. Then f is a valid function.

(e) __Let f:R — R be defined by f(z) = 23. Then f is one-to-one and onto.

(f) __Let f: R — R be defined by f(z) = /x. Then f is a function that is neither one-to-

one nor onto.

(g) ___The range of a function is always a subset of the codomain.

(h) A function that is one-to-one is guaranteed to be onto.

(i) __ Let a,b € Z and define f : Z — Z by f(x) = ax +b. Then f is one-to-one and onto.
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(j) __Let a,b € Z and define f : N — N by f(z) = ax + b. Then f is one-to-one and onto.

(k) ___Let a,b € R and define f : R — R by f(z) = ax + b. Then f is one-to-one and onto.

Definition 5.88. Let f be a one-to-one correspondence from A to B. The inverse of f,
denoted by f~1, is the function such that f~1(b) = a whenever f(a) = b.

A function that has an inverse is called invertible. Said another way, a function is invert-
ible if and only if it is one-to-one and onto.

Note: It is important to note that the function f~' is not the same thing as 1/f. This is
an unfortunate case when a notation can be interpreted in two different ways. That is, in
some contexts, a~' means the inverse function and in other contexts it means 1/a. Usually
the context will help you determine which one is the correct interpretation.

Procedure 5.89. One method of finding the inverse of a function is to replace f(x) (or
whatever the name of the function is) with y and solve for x (or whatever the variable is).
Finally, replace y with x and you have the inverse.

Example 5.90. Let f : Z — Z be defined by f(x) = x + 2. Notice that f is a one-to-one
correspondence, so it has an inverse. We let y = x 4 2. Solving for z, we get z = y — 2. Thus,

fiz)=z-2.

Example 5.91. Let f : R — R be defined by f(z) = 2. Then f does not have an inverse
since it is not one-to-one.

Example 5.92. Let f : R — R be defined by f(z) = 2. We leave it to the reader to prove
that f is one-to-one and onto. Given that, we can find it’s inverse.

Let y = 23. Taking the third root of both sides, we obtain Iy = Va3 =z. Orz = Hy.
Thus, the inverse of f is given by f~!(x) = /.
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xExercise 5.93. Let f(x) = 3z — 5 be a function over R. Prove that f has an inverse and
then find it.

Definition 5.94. Let g be a function from A to B and f a function from B to C. The
composition of f and g, denoted by f o g, is defined as (f og)(x) = f(g(x)) for any x € A.

In other words, to compose f with g, we first compute g(x). Then we plug in g(z) into the
formula for f.

Note: Look closely at the notation. f o g has f before g, so it might seem like it should be
g9(f(x))—in other words, apply f first, then then g. But that is not how it is defined.

Also notice that to compose f with g, it is necessary that the range of g is a subset of the
domain of f since otherwise it would be impossible to compute.

Example 5.95. Let f and g be functions on Z defined by f(z) = 22 and g(z) = 2z — 5.
Compute f o g and g o f, simplifying your answers.

Solution:

(fog)x) = flg(z)) = f(2x —5) = (2 — 5)% = 42 — 20z + 25.
(go (@) = g(f(x)) = g(a®) =22 5.

Notice that in the previous example, f o g # g o f. In other words, the order in which we
compose functions matters since the result is not always the same (although occasionally it is).

xExercise 5.96. Let f and g be functions on R defined by f(z) = |z]| and g(z) = z/2.
Compute f o g and g o f, simplifying your answers.

(fog)(z) =

(gof)(x) =
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Example 5.97. Let f be a function from B to C, and g be a function from A to B. If both
f and g are one-to-one, prove that f o g is one-to-one.

Direct Proof:
For any distinct elements z,y € A, g(x) # g(y), since g is one-to-one. Since f is

also one-to-one, then f(g(z)) # f(g(y)), which is the same as (fog)(z) # (fog)(y).
Therefore f o g is one-to-one. O

Proof by Contradiction:

Assume f o g is not one-to-one. Then there exist distinct elements x,y € A such
that (f o g)(z) = (f o ¢g)(y). This is equivalent f(g(z)) = f(g(y)). Since f is
one-to-one, it must be the case that g(x) = g(y). But z # y, and g is one-to-one,
so g(z) # g(y). This is a contradiction. Therefore f o g is one-to-one. g

Definition 5.98. We define the identity function, 14 : A — A, by ta(z) = x.
The subscript can be omitted if the domain/codomain is clear.

Theorem 5.99. Let f be an invertible function from A to B. Then fo f~' = 1p and
flof=4
Proof: Let a € A and define b = f(a). Then by definition, f~(b) = a, so
(f~to f)la) = F7H(f(a) = f71(b) = a. Thus, f~'o f =1a.

Conversely, if b € B and we define a = f=1(b), then (f o f~1)(b) = f(f~1(b)) =
fla) =b. Thus, fo f~'=p. O

Example 5.100. Prove or disprove that f(z) = 2x + 1 and g(z) = 2z — 1, defined over the
real numbers, are inverses.

Solution:  Notice that (fog)(z) = f2z—1) =22z —1)+1 =4z — 1 # =.
According to Theorem 5.99, this implies that f and g are not inverses.

*Exercise 5.101. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample.

(a) ___Let a,b € Z and define f : Z — 7Z be defined by f(x) = ax +b. Then f is invertible.

(b) __Let a,b € Z and define f : N — N be defined by f(z) = ax +b. Then f is invertible.

(¢) __Let a,b € R and define f : R — R be defined by f(z) = ax +b. Then f is invertible.
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(d) ___If f(x) = 22, then f~1(x) = 1/22.

(e) Let n be a positive integer. Then the function {/z is invertible on R.

(f) Let n be a positive integer. Then the function {/z is invertible on N.

(g) Let n be a positive integer. Then the function {/z is invertible on R* (the positive
real numbers).

(h) __Let f and g be functions on Z defined by f(x) = 22 and g(x) = 1/x. Then fog = gof.

(i) __ Let f and g be functions on Z defined by f(x) = (z + 1) and g(z) = 2 + 1. Then
fog=gof.

(j) ___Let f(x) = |z| and g(z) = [z] be defined on the real numbers. Then fog = go f.

(k) ___Let f(z) = |z] and g(x) = [z] be defined on the real numbers. Then f and g are
inverses of each other.

(1) __ Let f(z) = 22 and g(z) = /= be defined over the positive real numbers. Then f and
g are inverses of each other.
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5.4 Partitions and Equivalence Relations

Partitions and equivalence relations are useful in computer science in several contexts. One of the
most obvious is software testing. When creating test cases, you always want to ensure that you
are covering ‘all of the cases’. But what does that mean? It means you are thinking about how
to partition all of the possible inputs into several sets, where the elements in one set are somehow
different from those in another set, and are quite a lot like the other elements in the set. Let’s
see an example.

Example 5.102. Consider the following function that returns n! if n > 0, and returns —1 if
n < 0 (n! is undefined for negative values of n, but we have to return something, so why not
a negative number?)

int factorial(int n) {
if (n<0) { return -1; }
else if (n==0) { returm 1; %}
else {
int fact 1;
for(int i=1;i<=n;i++) {
fact factx*i;

}

return fact;
}
}
What values of n should we use to test factorial?

Solution: There seems to be three different types of values based on the
structure of the code: 0, numbers less than 0, and numbers greater than 0. So
we should test at least one number from each of these sets. Since boundaries can
sometimes cause problems, we should include those. In light of this, we might test
0, —1, =2, —10, 1, 2, and 8. Since these cover all of the cases, they should provide
pretty good evidence of whether or not factorial is implemented properly.®

“But remember, testing never proves that code is correct!

Definition 5.103. Let S # & be a set. A partition of S is a collection of non-empty,
pairwise disjoint subsets of S whose union is S.

Example 5.104. Define E = {2k : k € Z} and O = {2k + 1: k € Z}. Clearly E is the set of
even integers and O is the set of odd integers. Since ENO =@ and EUO =Z, {E,0} is a
partition of Z. Put another way, we can partition the integers based on parity.

Example 5.105. We can partition the socks in our sock drawer by color. In other words,
we put all of the black socks in one set, the white ones in another, the green ones in another,
etc. For simplicity, we can put all of the multi-color socks in a single set.
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Example 5.106. We can partition the set of all humans by putting each person into a set
based on the first letter of their first name. So Adam and Adele go into set A and Zeek goes
into set Z, for instance. The sets in the partition are A, B, ... Z.¢

“For simplicity, we assume everyone’s name is written using the Roman alphabet.

Example 5.107. Let A = {1,5,8}, B ={2,3}, C = {4}, D = {6,9}, and E = {7,10, 11, 12}.
Then the sets A, B, C, D, and F form a partition of the set {1,2,3,4,5,6,7,8,9,10,11,12}.

Example 5.108. When choosing test cases for the factorial method in Example 5.102, we
thought about 3 subsets of Z: {0}, Z*, and Z~. These cases form a partition of Z since they
are disjoint and Z = {0} UZT UZ~. This is good since it means we covered at least one value
of the different types, and we didn’t ‘overtest’ any of the cases by unknowingly duplicating
values from the same case.

*xExercise 5.109. You need to decide on test cases for a method int maximum(int x,int b)
that returns the maximum of its arguments. How would you partition the possible inputs
into sets such that if it is correct for one (or a few) tests of cases from that set, it is probably
correct for the rest of the cases in that set? Notice that the set of inputs is Z x Z.

Answer

Most of the partitions we talk about will be based on some meaningful characteristic of the
elements of a set—like parity, color, or sign. But this is not inherent in the definition. For instance,
the sets in the partition from Example 5.107 do not seem to have any significant meaning. Some,
like the one in Example 5.104, will have a precise mathematical definition. Others, like the one
in Examples 5.105 will not.

*Exercise 5.110. Define a partition on Z that contains more than one subset.

Answer

Example 5.111. Let 3Z ={3k : k€ Z},32+1={3k+1: k€ Z},and 3Z+ 2= {3k + 2 :
k € Z}.* Since
(3Z) U (3Z + 1) U (3Z + 2) = Z and

(3Z)N(3Z+1) =@, (3Z)N (3Z+2) = @, (3Z + 1) N (3Z + 2) = &,
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{3Z,37 + 1,3Z + 2} is a partition of Z.

“The notation in this example may seem a bid odd at first. How are you supposed to interpret “3Z + 1”7
Is this 3 times the set Z plus 17 What does it mean to do algebra with sets and numbers? I won’t get into
all of the technical details, but here is a short answer. You can think of “3Z + 1”7 as just a name. Sure, it
may seem like an odd name, but why can’t we name a set whatever we want? Some people name their kids
Jon Blake Cusack 2.0 and get away with it. You can also think of “3Z 4 1”7 as describing how to create the
set—Dby taking every element from Z, multiplying it by 3, and then adding 1. Thus, you can think of “3Z + 1”
as being both an algebraic expression and a name.

*Exercise 5.112. Let I = R\ Q (the set of irrational numbers). Prove that {Q,I} is a
partition of R.

Proof

Recall that when a list of number is given between parentheses (e.g. (1,2,3)), it typically
denotes an ordered list. That is, the order that the element are listed matters. So, for instance,
(1,2) and (2,1) are not the same thing.

Next we will develop an alternative way of thinking about partitions: equivalence relations.
After defining some terms and providing a few examples, we will make the connection between
partitions and equivalence relations more clear.

Definition 5.113. Let A, B be sets. A relation (or binary relation) from A to B is a
subset of the Cartesian product A X B.

Given a relation R, we say that x is related to y if (x,y) € R. We sometimes write
this as vRy. An alternative notation is x ~ y.

If R is a relation from A to A, we sometimes say R is a relation on A.

Example 5.114. Let A be the set of all students at this school and B be the set of all courses
at this school. We can define a relation R by saying that xRy if student x has taken course
y. Said another way, we can define R by saying that (x,y) € R if student x has taken course
Y.

Example 5.115. We can define a relation R = {(a,a?) : a € Z}. That is, z is related to y if

y = 22

Example 5.116. We can define a relation on Z by saying that x is related to y if they have
the same parity. Thus, (2,0), (234, —342), (3,17) are all in R, but (2,127) is not.
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*Question 5.117. Define R = {(a,b) : a,b € Z and a < b}. Is R a relation? Explain.

Answer

*Question 5.118. Is {(1,2), (345, 7), (43,8675309), (11,11)} a relation on Z*? Explain.

Answer

Definition 5.119. A relation R on set A is said to be reflexive if for all x € A, xRz (or
(x,x) € R).

*Exercise 5.120. Let P be the set of all people. Which of the following relations on P are

reflexive? Explain why or why not.
(a) T ={(a,b) : a,b € P and a is taller than b}
(b) N is the relation with a related to b iff a’s name starts with the same letter as b’s name.
(c) C is the relation defined by (a,b) € C' if a and b have been to the same city.
(d) K ={(a,b):a,be P and a does not know who b is}

)

(e) R = {(Barack Obama, George W. Bush)}.
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Definition 5.121. A relation R on set A is said to be symmetric if for all z,y € A, xRy
implies yRx (or (x,y) € R implies (y,x) € R).

*Exercise 5.122. Which of the relations from Example 5.120 are symmetric? Explain why
or why not.

Definition 5.123. A relation R on set A is said to be anti-symmetric if for all x,y € A,
xRy and yRx implies x =y (or (z,y) € R and (y,z) € R implies v = y).
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*Question 5.124. Let R be a relation on Z.

(a) If (1,1) € R, can you tell whether or not R is anti-symmetric? Explain.

Answer

(b) What if (1,2) and (2,1) are both in R? Can you tell whether or not R is anti-symmetric?

Answer

*Question 5.125. An alternative definition of anti-symmetric is that if x # y, then (x,y)
and (y,x) are not both in the relation. Why is this definition equivalent?

Answer

Note: This definition is sometimes misunderstood. Let’s call elements of the form (z,x)
diagonal elements and elements of the form (z,y) where © # y off-diagonal elements.”
Then the definition of anti-symmetric is only dealing with off-diagonal elements. It is saying
nothing about the diagonal elements. In other words, it is not saying that (z,x) € R for any,
let alone all, values of x. But it also isn’t saying (x,x) & R. It is simply saying that the only
way for both (z,y) and (y,x) to be in R is if x = y.

The alternative definition given in the previous question may help a little. Notice that the
definition there starts with ‘if x # y...” So what does the definition say about the case x = y?
Nothing. It never mentions it.

You could redefine it as follows: R is anti-symmetric if for all non-diagonal elements
(z,y) € R, (y,z) € R. But that can be problematic if you forget that x # y is required.

“These terms come from thinking about the elements of a relation as elements in a matrix indexed by the
members of the set. If this doesn’t make sense, don’t worry too much about it.

*Exercise 5.126. Which of the relations from Example 5.120 are anti-symmetric? Explain
why or why not.

(a) T
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*Question 5.127. Answer each of the following. Include a brief justification/example.

(a) If a relation is not symmetric, is it anti-symmetric?

Answer

(b) If a relation is not anti-symmetric, is it symmetric?

Answer

(c) Can a relation be both symmetric and anti-symmetric?

Answer

*Exercise 5.128. Give an example of a relation on any set of your choice that is both
symmetric and anti-symmetric. Justify your answer.

Answer
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Definition 5.129. A relation R on set A is said to be tramsitive if for all z,y,z € A,
xRy and yRz implies xRz (or ((z,y) € R and (y, z) € R) implies (z,z) € R).

xExercise 5.130. Which of the relations from Example 5.120 are transitive? Explain why
or why not.

Definition 5.131. A relation which is reflexive, symmetric and transitive is called an equiv-
alence relation.

Example 5.132. Let S ={All Human Beings}, and define the the relation M by (a,b) € M
if a has the same (biological) mother?® as b. Show that M is an equivalence relation.

Proof: (Reflexive) a has the same mother as a, so (a,a) € M and M is
reflexive.

(Symmetric) If a has the same mother as b, then b clearly has the same mother
as a. Thus, (a,b) € M implies (b,a) € M, so M is symmetric.

(Transitive) If a has the same mother as b, and b has the same mother as ¢, then
clearly a has the same mother as c¢. In other words, (a,b) € M and (b,c) € M
implies that (a,c) € M, so M is transitive.

Since M is reflexive, symmetric, and transitive, it is an equivalence relation. [
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“The important assumption we are making is that each person has exactly one mother.

*Exercise 5.133. Which of the relations from Example 5.120 are equivalence relations?
Explain why or why not.

Definition 5.134. A relation which is reflexive, anti-symmetric and transitive is called a
partial order.

xExercise 5.135. Which of the relations from Example 5.120 are partial orders? Explain
why or why not.
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*xExercise 5.136. Let X be a collection of sets. Let R to be the relation on X such that A
is related to B if A C B. Prove that R is a partial order on X.

Proof: (Reflexive)

(Anti-symmetric)

(Transitive)

O

Labeling the lines of these proofs with what property we are proving isn’t strictly necessary.
However, it does make the proofs a little easier to read.

xExercise 5.137. Consider the relation R = {(1,2),(1,3),(1,5), (

2,2),(3,5),(5,5)} on the
set {1,2,3,4,5}. Prove or disprove each of the following.

(a) R is reflexive

Answer

(b) R is symmetric
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Answer

(¢) R is anti-symmetric

Answer

(d) R is transitive

Answer

(e) R is an equivalence relation

Answer

(f) R is a partial order

Answer

It turns out that congruence modulo n is an equivalence relation. (See Definition 3.13 if
necessary).

Theorem 5.138. Let n be a positive integer. Then R = {(a,b) : a =b (mod n)} is a relation
on the set of integers. Show that R is an equivalence relation.

Proof: We need to show that R is reflexive, symmetric, and transitive.
(Reflexive) Clearly a —a =0-n, so a =a (mod n). Thus, R is reflexive.
(Symmetric) Assume (a,b) € R. Then a =b (mod n), which implies a —b = kn
for some integer k. So b—a = (—k)n, and since —k is an integer, b = a (mod n).
Therefore, (b,a) € R. Thus, R is symmetric.

(Transitive) Assume (a,b), (b,c) € R. Then a =b (mod n) and b = ¢ (mod n).
Thus, a — b = kn for some integer k and b — ¢ = In for some integer l. Given
these, we can see that

a—c=(a—-b)+(b—c)=kn+in=(k+1Dn.

Since k + 1 is an integer, a = ¢ (mod n). Thus (a,c) € R, so R is transitive. [

Notice that if we let n = 2 in the previous theorem, we essentially have the relation from
Example 5.116.
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*Fill in the details 5.139. Let R be the relation on the set of ordered pairs of positive
integers (that is, Z*T x Z™) such that ((a,b), (c,d)) € R if and only if ad = be. Show that R
is an equivalence relation.®

Proof: We need to show that R is reflexive, symmetric, and transitive.

(Reflexive) Since ab = ba for all positive integers, €ER
for all (a,b). Thus R is reflexive.

(Symmetric) Assume ((a,b),(c,d)) € R. Then we know that ad =

We can rearrange this as cb = . Thus, € R, so R is

(Transitive) Assume.that ((a,b),(c,d)) € R and ((¢,d),(e,f)) € R. Then

we know that and . Solving the
second for ¢, we get ¢ = . Plugging it into the first we get
ad = . Multiplying both sides by f, and canceling the d on both
sides yields . Thus, € R, so R is
transitive. 0

“In this example, R is a relation on a set of ordered pairs. Thus, the elements of R are ordered pairs of
ordered pairs. Don’t let this confuse you. The elements of a relation are always ordered pairs. What each
part of the pair is depends on the underlying set. If it is the set of animals, then the elements of the relation
are ordered pairs of animals. If it is Z, then the elements of the relation are ordered pairs of integers. And if
it is Z* x ZT, then the elements of the relation are ordered pairs of ordered pairs of positive integers.

Definition 5.140. Let R be an equivalence relation on a set S. Then the equivalence
class of a, denoted by [a], is the subset of S containing all of the elements that are related
to a. More formally,

[a] = {z € S : zRa}.

If x € [a], we say that x is a representative of the equivalence class [a]. Note that any
element of an equivalence class can serve as a representative.

Example 5.141. The equivalence class of 3 modulo 8 is [3] = {8k + 3 : k € Z}. Notice that
1] ={8k+11:ke€Z} ={8k+3:keZ}=3]. In fact, [3] = [8] + 3] for all integers [. In
other words, any element of the form 8[43, where [ is an integer, can serve as a representative
of [3]. Further, we can call this class [3], [11], [19], etc. It doesn’t really matter since they all
represent the same set of integers. Of course, [3] is the most logical choice.
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Example 5.142. Notice that if our relation is congruence modulo 3, we can define three
equivalence classes:

0] = {3k:keZ},
1] {3k +1:ke€Z}, and
2] = {3k+2:keZ).

It isn’t too difficult to see that Z = [1] U [2] U [3], and that these three sets are disjoint. In
other words, the equivalence classes {[1],[2], [3]} form a partition of Z. As we will see shortly,
this is not a coincidence.

Lemma 5.143. Let R be an equivalence relation on a set S. Then two equivalence classes
are either identical or disjoint.

Proof: Let a,b € S, and assume [a] N [b] # @. We need to show that [a] = [b].
First, let © € [a] N [b] (which exists since [a] N [b] # @ ). Then xRa and xRb, so by
symmetry aRx and by transitivity aRb.

Now let y € [a]. Then yRa. Since we just showed that aRb, then yRb by transi-
tivity. Thus y € [b]. Therefore [a] C [b].

A symmetric argument proves that [b] C [a]. Therefore, [a] = [b]. O

Let’s bring together some of the examples of partitions with examples of equivalence relations
and classes.

Example 5.144. We just saw that congruence modulo 3 is an equivalence relation with three
equivalence classes, {3k : k € Z}, {3k +1: k € Z}, and {3k +2 : k € Z}. In Example 5.111,
we defined a partition of Z using these same three subsets.

Example 5.145. In Example 5.116 we defined a relation on Z based on parity. It is not
difficult to see that the equivalence classes of that relation are [0] = E and [1] = Q. Notice
these are the same subsets we used to partition Z in Example 5.104.

Example 5.146. In Example 5.106 we defined a partition of people according to the first
letter of their first name. The sets in the partition were A, B, ..., Z.

We can define an equivalence relation on the set of all people by saying a is related to b if a’s
name starts with the same letter of the alphabet as b’s name. In a series of previous exercises,
you proved that this defines an equivalence relation. Notice that the equivalence classes
are the sets A, B,...,Z (which we can think of as, for instance [Adam], [Betty], ..., [Zeek]).
Again, these are the same sets that we used to partition people into in Example 5.106.

In these examples, there seems to be a connection between the equivalence classes of the
relation and the sets in a partition. As the next theorem illustrates, this is no coincidence.



158 Chapter 5

Theorem 5.147. Let S # @ be a set. Every equivalence relation on S induces a partition of
S and vice-verse.

Proof: By Lemma 5.143, if R is an equivalence relation on S then

§= Ul

a€esS

and [a] N [b] = & if a is not related to b. This proves the first half of the theorem.

Conversely, let

S=JSa SaNSp=2 if a#p,

be a partition of S. We define the relation R on S by letting aRb if and only if
they belong to the same S,. Since the S, are mutually disjoint, it is clear that R
is an equivalence relation on S and that for a € S,, we have [a] = S,. O

Put in simple terms, equivalence classes of an equivalence relation and partitions of sets are
essentially the same thing. The main difference is in how we are looking at it. When thinking
about equivalence relations/classes, we are focused on what it means for two things to be related.
When thinking about partitions, we are focused on what it means for an element to be in a
particular subset of the partition.

Example 5.148. In light of Theorem 5.147, we can say that the relation defined by congru-
ence modulo 4 partitions the set of integers into precisely 4 equivalence classes: [0], [1], [2],
and [3]. That is, given any integer, it is contained in one (and only one) of these classes.

More generally, if n > 2, Z can be partitioned into n sets, [0], [1], ..., [n—1], each of which
is an equivalence class of the relation defined by congruence modulo n.

When we think about the partition, we are focused on the concept that each number z
goes into one of the n subsets based on the value  mod n. On the other hand, when we think
about the relation of congruence modulo n, we are focused on the idea that x and y are in
the same equivalence class iff z =y (mod n).
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5.5 Problems

Problem 5.1. Draw a Venn diagram showing AN (B UC), where A, B, and C are sets.

Problem 5.2. Assume A, B, and C are sets. Prove each of the following using a set containment
proof.

(a) (ANBNC)C (AN B).
(b) ANBC AU B.

(
d

)

)

¢) (AUB)\ (ANB) = (A\B)U(B\ A).

) (A—B)\C C A\C.
)

() AU(BNC)=(AUB)N(AUC).

Problem 5.3. Prove each of the following set identities using a set containment proof based on
the basic definitions of N, U, etc. (see examples 5.45, 5.48, and 5.49).

(a) AU(ANB) = A.

(b) Au(BNC)=(AUuB)N(AUC)

(¢) (A\NB)\C=(A\NC)\(B\C).

(d) AU(BNC) = (CUB)NA. (This one is a little tricky.)

Problem 5.4. Rusty has 20 marbles of different colours: black, blue, green, and yellow. Seventeen
of the marbles are not green, five are black, and 12 are not yellow. How many blue marbles does
he have?

Problem 5.5. Let A and B be TreeSets (See Example 5.50).

(a) The method addAll(TreeSet other) adds all of the elements in other to this set if they’re
not already present. What is the result of A.addA11(B) (in terms of A and B and set operators)?

(b) The method removeAll (TreeSet other) removes from this set all of its elements that are
contained in other. What is the result of A.removeAll(B) (in terms of A and B and set
operators)?

(c) Write A.contains(x) using set notation, where = is an element that can be stored in a
TreeSet.

Problem 5.6. You need to settle an argument between your boss (who can fire you) and your
professor (who can fail you). They are trying to decide who to invite to the Young Accountants
Volleyball League. They want to invite freshmen who are studying accounting and are at least 6
feet tall. They have a list of all students.

(a) Your boss says they should make a list of all freshmen, a list of all accounting majors, and a
list of everyone at least 6 feet tall. They should then combine the lists (removing duplicates)
and invite those on the combined list. Is he correct? Explain. If he is not correct, describe in
the simplest possible terms who ends up on his guest list.
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(b) Your professor says they should make a list of everyone who is not a freshman, a list of
everyone who does not do accounting, and a list of everyone who is under 6 feet tall. They
should make a fourth list that contains everyone who is on all three of the prior lists. Finally,
they should remove from the original list everyone on this fourth list, and invite the remaining
students. Is he correct? Explain. If he is not correct, describe in the simplest possible terms
who ends up on his guest list.

(c) Give a simple description of how the guest list should be created.

Problem 5.7. Let a,b € R, a # 0, and define f : R — R by f(x) = ax + b. Prove that f is
one-to-one and onto.

Problem 5.8. Let a and b be real numbers with a # 0. Show that the function f(z) =az +b
is invertible.

Problem 5.9. Prove or disprove: if a, b, and ¢ are real numbers with a # 0, then the function
f(x) = ax® + bz + c is invertible.

Problem 5.10. Prove that if f and g are onto, then f o ¢ is also onto.

Problem 5.11. Let f(z) =+ |x] be a function on R. (This one is a little tricky.)
(a) Prove or disprove that f is one-to-one.

(b) Prove or disprove that f is onto.

(c) Prove or disprove that f is invertible.

Problem 5.12. Find the inverse of the function f(x) = 2® + 1 over the real numbers.

Problem 5.13. Let f be the function on Z* that maps x to the number of bits required to
represent x in binary. For instance, f(1) =1, f(2) =2, f(3) =2, f(4) =3, f(10) = 5, etc. Hint:
The number 2" requires n + 1 bits to represent (a single 1 followed by n zeros). You may be able
to use this fact in one of your proofs.

(a) Prove or disprove that f is one-to-one.
(b) Prove or disprove that f is onto.
(¢) Prove or disprove that f is invertible.

Problem 5.14.
Consider the relation R = {(1,2), (1,3), (3,5),(2,2),(5,5),(5,3),(2,1),(3,1)} on theset {1,2,3,4,5}.

Is R reflexive? symmetric? antisymmetric? transitive? an equivalence relation? a partial order?

Problem 5.15. Let X be the set of all people. Which of the following are equivalence relations?
Prove it.
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(e) Rs = {(a,b) € X?|a has the same kind of pet as b}
Problem 5.16. Repeat the previous problem, but which are partial orders? Prove it.

Problem 5.17. Define three different equivalence relations on the set of all TV shows. For each,
give examples of the equivalence classes, including one representative from each. Prove that each
is an equivalence relation.

Problem 5.18. Define a relation on the set of all Movies that is not an equivalence relation.

Problem 5.19. Let A = {1,2,...,n}. Let R be the relation on P(A) (the power set of A) such
that a,b € P(A) are related iff |a| = |b|. Prove that R is an equivalence relation. What are the
equivalence classes of R?

Problem 5.20. The class Relation is a partial implementation of a relation on a set A. It has a
list of Element objects.

e An Element stores an ordered pair from A. Element has methods getFrom() and getTo()
(using the language of the directed graph representation). So if an Element is storing (a,b),
getFrom() returns a and getTo() returns b. The constructor Element (Object a, Object b)
creates an element (a,b).

e The Relation class has methods like areRelated(Object a,0Object b), getElements( ), and
getUniverse( ).

e Methods in the Relation class can use for(Element e : getElements()) to iterate over
elements of the relation.

e Similarly, the loop for(Object a : getUniverse()) iterates over the elements of A.
Given all of this, implement the following methods in the Relation class:
(a) isReflexive()
(b) isSymmetric()

(c) isAntiSymmetric()
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Sequences and Summations

6.1 Sequences

Definition 6.1. A sequence of real numbers is a function whose domain is the set of natural
numbers and whose output is a subset of the real numbers. We usually denote a sequence by
one of the notations

agp, a1,a2, . - -
or
{an n= 0
or

{an}.

The last notation is just a shorthand for the second notation.

Note: Since sequences are functions, sometimes function notation is used. That is, a(n)
instead of an.

We will be mostly interested in two types of sequences. The first type are sequences that have
an explicit formula for their n-th term. They are said to be in closed form.

Example 6.2. Let a, =1 — 2n ,n=0,1,.... Then {an o is a sequence for which we have
an explicit formula for the n-th term. The ﬁrst five terms are

ag = 1-3 1-1 = ¢,
a; = 1-— i1 = _% %7
az = 1-— i2 = _% = %7
o = 1-% = 1-} = [
ag = 1-% = 1-4& = B

163
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Note: Sometimes we may not start at n = 0. In that case we may write

Ay A1, AmA42, - - -

or

{an jz_gom 9

where m is a non-negative integer. Most sequences we will deal with will start with m =0 or
m=1.

xExercise 6.3. Let {x,} be the sequence defined by z, = 1+ (=2)",n = 0,1,2,.... Find
the first five terms of {z,}.

(a) zo =

(b) z1 =

(d) x5 =

(e) zq4 =

xExercise 6.4. Find the first five terms of the following sequences.

1 n
(a) xn:1+(—§> ,n=0,1,2,...

Tog = I = xI9

r3 = Ty =

(b) z,=n!+1,n=0,1,2,...

Tog = T = o =

1‘3: ,1'4:
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1
(C) Tn = m,n:2,3,4,...
To = xr3 = Ty =
T5 = Te =

Tr1 = 9 = Tr3 —

T4 = Iy =

The second type of sequence are defined recursively. That is, each term is based on previous
term(s). We call these recurrence relations.

Example 6.5. Let

1
T = 1, xn:<1+g)xn_1, forn=1,2,....

Then {z, :S(’] is a recursively defined sequence. The terms 1, 2o, ..., z5 are
21 = (1+Hao = (1+3)1 = 141 = 2
vy = (1+3)m (1+4)2 = 241 = 3
zs = (1+3)ze = (1+3)3 = 341 = 4
g = (1+3)ws = (1+4)4 = 441 = 5
zs = (14+%)as = (1+34)5 = 541 = 6

Notice that in the previous example, we gave an explicit definition of xg. This is called an
initial condition. Every recurrence relation needs one or more initial conditions. Without them,
we have an abstract definition of a sequence, but cannot compute any values since there is no
“starting point.”

When we find an explicit formula (or closed formula) for a recurrence relation, we say we have
solved the recurrence relation.

Example 6.6. Given the values we computed in Example 6.5, it seems relatively clear that
T, = n + 1 1is a solution for that recurrence relation.
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Note: [t is important to be careful about jumping to conclusions too quickly when solving
recurrence relations.® Although it turns out that in the previous example, x, = n + 1 is the

correct closed form (we will prove it shortly), just because it works for the first 5 terms does
not necessarily imply that the pattern continues.

“These comments also apply to other problems that involve seeing a pattern and finding an explicit formula.

xExercise 6.7. Let {x,} be the sequence defined by
ro=1,2, =5 -2,_1, form=1,2,....

Find a closed form for z,. (Hint: Start by computing x, z2, x3, etc. until you see the
pattern.)

xExercise 6.8. Let {x,} be the sequence defined by
zo=1l,xp=n-xp_1, form=1,2,....

Find a closed form for z,,.
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xEvaluate 6.9. Define {a,} by a(0) =1, a(1) = 2, and

for n > 2. Find a closed form for a,,.

Solution: We can see that

a, = {% xa,J—l-ao = {% ><2_J—H = 4
33 = {% X87_J+6| = {% ><'+J+2_ = 8
3y = \\% XagJ +87_ = {% ><8J +4 = b

(Mou can verify these with a caleulator). At this point it seems rela-
tively clear that a, = 2"

Evaluation

Did you catch what happened in the previous Evaluate exercise? The ‘obvious’ solution wasn’t
correct. If you missed this, go back and read the solution.

Generally speaking, you need to prove that the closed form is correct. One way to do this
is to plug it back into the recursive definition. If we can plug it into the right hand side of the
recursive definition and are able to simplify it to the left hand side, then it must be a solution.
We also have to verify that it works for the initial condition(s).

As an analogy, how do you know that = —1 is a solution to the equation 22 + 2z + 1 = 0?
You plug it in to get (—1)242(—=1)+1=1—-2+1 = 0. Since we got 0, z = —1 is a solution. We
do something similar for recurrence relations, except that what we are plugging in is a formula
instead of just a number.

Example 6.10. Prove that x,, = n + 1 is a solution to the recurrence relation given by

1
xo = 1, xn:(l—l—;)mn_l, n=12....

Proof: To prove that x,, = n + 1 is a solution for n > 0, we need to show two
things. First, that it works for the initial condition. Since zg = 1 = 0+ 1, it works
for the initial condition. Second, that if we plug it into the right hand side of the
recursive definition, that we can simplify it to z,. Doing so, we get

(14 ans = (14 ) (-1)+1)

- ().

= n+1

=5 $n
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Since plugging the solution back in verifies the recurrence relation, x, =n + 1 is
a solution to the recurrence relation.

If you are confused by the first step of algebra, remember that we are assuming
that x, = n+ 1 for n > 0. Thus, 2,1 = (n — 1) + 1 = n, since we are just
plugging in n — 1 instead of n. |

*Exercise 6.11. Prove that your solution to Exercise 6.7 is correct.

*Exercise 6.12. Prove that your solution to Exercise 6.8 is correct.
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xEvaluate 6.13. Determine what ferzle(n) (below) returns for n = 0,1,2,3,4 and then
re-write ferzle without using recursion, making it as efficient as possible.®

int ferzle(int n) {
if (n<=0) {
return 3;

} else {
return ferzle(n-1) + 2;

}
}

Solution: First, we can see that ferzle(O) returns 3 since it executes
the code in the i statement. ferzlelD) returns ferzle(ON+2, which is
342 =5 ferzle()) returns ferzle(D+2, which is S+2 =71 ferzle(3)
returns ferzle(2)+42, which is T+2 = 9. ferzle(4) returns ferzle(3)+21,
which is 942 =I. Notice that =2 x4+ +3,9=2x34+3, 1=2%2+3,
S =2x43,and 3 =2x0O43. From this, it is pretty clear that ferzle(n)
returns 2n—+3. Thus, my simplified function is as follows:

int ferzle(int n) {
return 2*n+3;

Evaluation

?Although we have not formally covered recursion yet, we expect that you have seen it before and know
enough to follow this example.

+xExercise 6.14. Fix the code from the solution given in Evaluate 6.13 so that it still uses
the closed form, but works correctly for all values of n.

int ferzle(int n) {

A more complete discussion of solving recurrences appears in Chapter 8.
The following is a famous example of a recursively defined sequence that we will revisit several

times.
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Example 6.15. The Fibonacci sequence is a sequence of numbers that is of interest in various
mathematical and computing applications. They are defined using the following recurrence
relation:*

0 if n=0

=<1 if n=1

foc1+ fne ifn>1
In words, each Fibonacci number (beyond the first two) is the sum of the previous two. The
first few are fo =0, f1 =1,

fo = Atfh=1+0=1,
fsa = foth=1+1=2,
fo = fs3+fe=2+1=3,
fs = fa+fz=3+2=35,
fo = f5+f1=5+3=38,
fr. = fe+fs=8+5=13
Later we will see the closed form for the Fibonacci sequence. If you are really adventurous,

you might consider trying to determine it yourself. But be warned: It is not a simple formula
that you will come up with by just looking at some of the Fibonacci numbers.

“In the remainder of the book, when you see fx, you should assume it refers to the k-th Fibonacci number
unless otherwise specified.

Definition 6.16. A sequence {a,}, >0 is said to be
e increasing if a, < a1 Vn € N
e strictly increasing if a, < ap+1 Vn € N
e decreasing if a, > ap+1 Vn € N
e strictly decreasing if a, > a1 Vn € N

Some people call these sequences non-decreasing, increasing, non-increasing, and de-
creasing, respectively.

A sequence is called monotonic if it is any of these, and non-monotonic if it is none
of these.

Example 6.17. Recall that 0! =1, 1! =1,21=1-2=2,31=1-2-3 = 6, etc. Prove that
the sequence x,, = n!l,n =0,1,2,... is strictly increasing for n > 1.

Proof: For n > 1 we have
Tp=nl=nn-—1!=ne,_1 > x,_1,

since n > 1. This proves that the sequence is strictly increasing. O
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*Question 6.18. Notice in this first example we concluded that the sequence is strictly
increasing since we showed that z,, > x,,_1. But according to the definition we need to show
that z,, < z,+1. So did we do something wrong? Explain.

Answer

1
Example 6.19. Prove that the sequence z,, = 2 + = 0,1,2,... is strictly decreasing.

Proof: We have

1 1
s —an = (24 gr) = (24 37)
1

Thus, zp+1 — z, <0, so x, > x,+1, i.e., the sequence is strictly decreasing. [

n?+1
n

*Exercise 6.20. Prove that the sequence z,, = ,n=1,2 ... is strictly increasing.
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xExercise 6.21. Decide whether the following sequences are increasing, strictly increasing,
decreasing, strictly decreasing, or non-monotonic. You do not need to prove your answer,
but give a brief justification.

(a)

Tpn=n,n=0,1,2/...

Answer

Tn=(—1)"n,n=0,1,2,...

Answer

1

=—,n=012,..
n:

Tn

Answer

Answer

Tp=n>—n,n=12...

Answer

Tp=n?>—-n,n=0,1,2,...

Answer

Tn = (—1)", n=0,1,2,...

Answer
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1
h) z,=1——,n=0,1,2,...
2n

Answer

173

. 1
(i) xn:1+2—n,n:O,1,2,...

Answer

There are two types of sequences that come up often. We will briefly discuss each.

Definition 6.22. A geometric progression is a sequence of the form

a, ar,ar?, ar®, art, ...,

multiplying it by a fixzed number.

where a (the initial term) and r (the common ratio) are real numbers. That is, a geo-
metric progression is a sequence in which every term is produced from the preceding one by

Notice that the n-th term is ar™~'. If @ = 0 then every term is 0. If ar # 0, we can find r by

dividing any term by the previous term.

Example 6.23. Find the 35-th term of the geometric progression

1 5 8

7 IOV IR
Solution: a = %, and the common ratio is r = —2/i2 = —2v2. Thus,
the n-th term is % (—Zﬁ)n_l. Hence the 35-th term is % (—2\/§>34 = % =

1125899906842624+/2.

*Exercise 6.24. Find the 17-th term of the geometric progression

2 2 2
—37 300 T3E
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Example 6.25. The fourth term of a geometric progression is 24 and its seventh term is 192.
Find its second term.

Solution: We are given that ar® = 24 and ar® = 192, for some a and r. Clearly,

ar # 0, and so we find
a_rﬁ_r?)_@_g
ard 24

Thus, r = 2. Now, a(2)? = 24, giving a = 3. The second term is thus ar = 6.

*Exercise 6.26. The 6-th term of a geometric progression is 20 and the 10-th is 320. Find
the absolute value of its third term.

Definition 6.27. An arithmetic progression is a sequence of the form
a, a+d,a+2d, a+3d, a+4d,...,

where a (the initial term) and d (the common difference) are real numbers. That is, an
arithmetic progression is a sequence in which every term is produced from the preceding one
by adding a fized number.

Example 6.28. If s, = 3n — 7, then {s,} is an arithmetic progression with a = —7 and
d = 3 (assuming we begin with s).

Note: Notice that geometric progressions are essentially a discrete version of an exponential
function and arithmetic progressions are a discrete version of a linear function. One conse-
quence of this is that a sequence cannot be both of these unless it is the sequence a,a,a,. ..
for some a.

Example 6.29. Consider the sequence

4,7,10,13,16,19,22, . ...
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Assuming the pattern continues, is this a geometric progression? Is it an arithmetic progres-
sion?

Solution: It is easy to see that each term is 3 more than the previous term.
Thus, this is an arithmetic progression with a = 4 and d = 3. Clearly it is therefore
not geometric.

*Question 6.30. Tests like the SAT and ACT often have questions such as the following.

23. Given the sequence of numbers 2, 9, 16, 23, what will the 8th term of the
sequence be? (a) 60 (b) 58 (c) 49 (d) 51 (e) 56

(a) What is the ‘correct’ answer to this question?

Answer

(b) Why did I put ‘correct’ in quotes in the previous question?

Answer

*Question 6.31. Determine whether or not the following sequences are geometric and/or
arithmetic. Explain your answer.

(a) The sequence from Example 6.7.

Answer

(b) The sequence from Example 6.8.

Answer

(c) The sequence generated by ferzle(n) in Evaluate 6.13 on the non-negative inputs.

Answer
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6.2 Sums and Products

When there is a need to add or multiply terms from a sequence, summation notation (or sum
notation) and product notation come in handy. We first introduce sum notation.

Definition 6.32. Let {a,} be a sequence. Then for 1 < m < n, where m and n are integers,
we define
n
Z Q) = Qm + Q41 + -+ ap.
k=m
We call k the index of summation and m and n the limits of the summation. More
specifically, m is the lower limit and n is the upper limit. Each ai is a term of the sum.

Note: We often use i, j, and k as index variables for sums, although any letters can be used.

Example 6.33. We can express the sum 1 4+ 3 +32 4+ 33 + ... +3% as

49
1=0

(Recall that 3° = 1, so the first term fits the pattern.)

*Exercise 6.34. Write the following sum using sum notation.

Tty+2 44+

Example 6.35. Write the following sum using sum notation.

1—yt+oy? Byt — St — % 4yl

Solution: This is a lot like the previous exercise, except that every other term
is negative. So how do we get those terms to be negative? The standard trick
relies on the fact that (—1)" is 1 if ¢ is even and —1 if ¢ is odd. Thus, we can
multiple each term by (—1)’ for an appropriate choice of i. Since the odd powers

are the negative ones, this is easy:
100 100

YDy or Y (=)

=0 i=0
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Note: You might be tempted to give the following solution to the previous problem:

As we will see shortly, this is the same as
100

- Zyzv
=0

which is not the correct answer. The bottom line: Always use parentheses in the appropriate
locations, especially when negative numbers are involved!

+xExercise 6.36. Write the following sum using sum notation.

T+ 92 + 4t 440 4o 4 10

Note: If you struggled understanding the two solutions to the previous example, it might be
time to review the basic algebra rules involving exponents. We will just give a few of them
here. You can find more extensive lists in an algebra book or various reputable online sources.
We have already used the fact that if x # 0, then 2° = 1. In addition, if x,a,b € R with
x > 0, then

As with sequences, we are often interested in obtaining closed forms for sums. We will present
several important formulas, along with a few techniques to find closed forms for sums.

Example 6.37. It should not be too difficult to see that

since this sum is adding 20 terms, each of which is 1. But notice that

19 219
Yo1=>) 1=20
k=0 k=200

since both of these sums are also adding 20 terms, each of which is 1. In other words, if the
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variable of summation (the k) does not appear in the sum, then the only thing that matters
is how many terms the sum involves.

*Exercise 6.38. Find each of the following.

(d) > 1=

Hopefully you noticed that the previous example and exercise can be generalized as follows.

Theorem 6.39. If a,b € Z, then

b
le(b—a+1).
k=a

Proof: This sum has b—a-+1 terms since there are that many number between
a and b, inclusive. Since each of the terms is 1, the sum is obviously b—a+ 1. [

Example 6.40. If we apply the previous theorem to the sums in Example 6.37, we would
obtain 20 —1+1 =20, 19— 0+ 1 = 20, and 219 — 200 + 1 = 20.

Next is a simple theorem based on the distributive law that you learned in grade school.

Theorem 6.41. If {x,} is a sequence and a is a real number, then

n n
Z a-Tp=a Z Tk
k=m k=m

Example 6.42. Using Theorems 6.39 and 6.41, we can see that

17 17

> 4=4)"1=4-(17-5+1)=4-13 =52.
k=5 k=5
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xExercise 6.43. Find each of the following.

30
(b) > 200=

k=20

We can combine Theorems 6.39 and 6.41 to obtain the following.

Theorem 6.44. Ifa,b € Z and c € R, then

b
Zc:(b—a~|—1)c.
k=a

Proof:  Using Theorem 6.41, we have

b b
Zc:c21:(b—a+l)c.
k=a k=a

Example 6.45. We can compute the sum from Example 6.42 by using Theorem 6.44 to

obtain
17

> 4=(17-5+1)4 =52.
k=5

Both ways of computing this sum are valid, so feel free to use whichever you prefer.

xExercise 6.46. Find each of the following.
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75
xEvaluate 6.47. Compute Z 10.
=25

Solution: This is just IO(1S — 25) =10 * SO = SOO0.

Evaluation

The following sum comes up often and should be committed to memory. The proof involves
a nice technique that adds the terms in the sum twice, in a different order, and then divides the
result by two. This is known as Gauss’ trick.

Theorem 6.48. If n is a positive integer, then

i 1
Zk: n(n + )
k=1 2

Proof: Let S = Z k for shorthand. Then we can see that
k=1

S=14243+-+n
and by reordering the terms,
S=n+n-1)+---+1.

Adding these two quantities,

S = 1 + 2 + + n
s = n + (n-1) + --- + 1
28 = (n+1) + (n+1) + + (n+1)
= n(n+1),
since there are n terms. Dividing by 2, we obtain S = n(nT—i—l)7 as was to be
proved. ]

Example 6.49.
% 10(10+1) 10-11

> k== 5 55.

*Exercise 6.50. Compute each of the following.
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k=l k=l

Evaluation

30
S k.
k=1
30
Solution I: Zk =129x30/2L =435.
k=l
Evaluation
30 30

Solution 22 Y k =k Y I=k30O -1+ =30k.

Note: A common error is to think that the sum of the first n integers is n(n—1)/2 instead of
n(n+1)/2. Whenever I use the formula, I double check my memory by computing 1+ 2 + 3.
In this case, n = 3. So is the correct answer 3-2/2 =3 or 3-4/2 =67 Clearly it is the latter.
Then I know that the correct formula is n(n + 1)/2. You can use any positive value of n to

check the formula. I use 3 out of habit.

n n
*Question 6.52. Is it true that Z k= Z k= —

k=0 k=1

Answer
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Theorem 6.53. If {x;} and {y;} are sequences, then for any n € Z+,

n n n
dozityi=) Tt ui
i=1 i=1 =1

Proof:  This follows from the commutative property of addition.

Example 6.54.

20 20 - 21

20 20
i+5=>i+> 5= +5-20 = 210 + 100 = 310.
L= L=

Chapter 6

*Exercise 6.55. Compute the following sum
100

d2—i=
i=1

n
Example 6.56. Let {a;} be a sequence of real numbers. Show that Z(ai —ai—1) = an — ap.

i=1
Proof: We can see that

Zn:(ai —ai1) = (Zz: ai> — (Zz: ai_1>

i=1

= (@ +ax+-+apn-1+a,) —(ag+ar+az+---+ap_1)
a1 +ay+---+ap1+a,—ay—a; —ax— - —ap_1

= ap — agp.

(al —a1)+(a2 —a2)+~~+(an_1 —an_l) +a, —ap

xExercise 6.57. Prove that the sum of the first n odd integers is n?.
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Example 6.58. Given what we know so far, how can we compute the following:

100

> k=?

k=50
It turns out thatl(‘)cglis is not that hard. Notice that it is almost a sum we know. We know
how to compute Z k, but that has too many terms. Can we just subtract those terms to get

k=1
the answer? What terms don’t we want? Well, we don’t want terms 1 through 49. But that
49

is just Z k. In other words,
k=1
100 100 49
Doko= Y k- k
k=50 k=1 k=1
100 -101 49 -50

2 2
= 5050 — 1225 = 3825

*Exercise 6.59. Compute each of the following.

20
() > k=

k=10

40
(b) > k=

k=21

xEvaluate 6.60. Compute the following.

100

> k.
k=30
Solution I:
0O 0O 30
Z k= Zk— Zk=IOO [101/2 =30 - 31/ = S050 — 4S5 = 4+3585
k=30 k=l k=]

Evaluation
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Solution 2
10O 10O 30
Z k = Zk— Zk=99-IOO/2_—2.9 -30/2L =4950 — 435 =43IS
k=30 k=l k=l
Evaluation
Solution 3:
10O 10O 29
Z k= ZK—ZK=IOO 101/ —29 -30 /2L =5S050 — 435 =4LIS
k=30 k=l k=l
Evaluation

100 100

k=30 k=1

Answer

*Question 6.61. Explain why the following computation is incorrect. Then explain why
the answer is correct even with the error(s).

30

> k=Y k—> k=100-101/2 —29-30/2 = 5050 — 435 = 4615

k=1

Theorem 6.62. Letn € Z™T.

M=
o

Then the following hold.

nn+1)2n+1)

k=1 6

ik?,  n*(n+1)?

k=1 4
o 1 1 1 1 a-1
é(k:—l)/c A R AR T )

We will prove Theorem 6.62 in the chapter on mathematical induction since that is perhaps the
easiest way to prove them. It is probably a good idea to attempt to commit the first two of these
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sums to memory since they come up on occasion.

*Question 6.63. Why does the third formula from Theorem 6.62 have a lower index of 2
(instead of 1 or 0, for instance)?

Answer

xExercise 6.64. Compute the following sum, simplifying as much as possible.

S 4k =
k=1

Sometimes double sums are necessary to express a summation. As a general rule, these should
be evaluated from the inside out.

n n
Example 6.65. Evaluate the double sum Z Z 1.
i=1 j=1

n n n
Solution: We have ZZ 1= Zn =n-n=n2
i=1j=1 i=1
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xExercise 6.66. Evaluate the following double sums

There is a formula for the sum of a geometric sequence, sometimes referred to as a geometric
series. It is given in the next theorem.

Theorem 6.67. Let x # 1. Then

n 1— $n+1 $n+1 _ .
=— or if you prefer | .
- 1—2z =1l
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n
Proof:  First, let S = Z zF. Then
k=0

n n n+1
acS:a:Z:Ek = kaH = Z$k
k=0 k=0 k=1
So

n+1 n

S-S = Z:Ek—Za:k
k=1 k=0

= (z1+x2+...+Tp+2pt1) —(To+2x1+ ...

xn—f—l . xO — xn-l—l —1.

So we have (x —1)S = 2"t — 1, 50 S = xn;_ll_l, since x # 1.

Example 6.68.
1— 3n+1 1— 3n+1 3n+1 -1

n
3k = =
Ig) 1-3 —2 2

+ zy)

187

xExercise 6.69. Find the sum of the following geometric series. For (b)-(d), assume y # 1.

(a) 1+3+32+33+...+3% =

b) 1+y+y?+y3+- +y'0=
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Corollary 6.70. Let N > 2 be an integer. Then
ey 1= - T+ 24+ 1).

Proof: Plugging N = n + 1 in the formula from Theorem 6.67 and doing a
little algebra yields the formula. O

Example 6.71. We can see that

-1 = (z—-1(z+1)
-1 = (z—1)(z®+2+1), and
-1 = (z-1)@3+22+z+1).

xExercise 6.72. Factor z° — 1.

P —1=

Let’s use the technique from the proof of Theorem 6.67 in the special case where x = 2.

*Fill in the details 6.73. Find the sum
PSS L) S S EPRES) L}

Solution:  We could just use the formula from Theorem 6.67, but that would
be boring. Instead, let’s work it out. Let

S=2042" 422428 ... 42"

Then 2S = . Notice S and 2S5 have most of the

same terms, except S has that 2S5 doesn’t have and 2S5 has
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that S doesn’t have. Therefore,

S=28-85 = 2+ 22 + 23 4 ... 4 2n 4 onFl

2n+1 —1.

Thus,

n
k=0

Since powers of 2 are very prominent in computer science, you should definitely commit the
formula from the previous example to memory.
Together, Theorems 6.41 and 6.67 imply the following:

Theorem 6.74. Let r # 1. Then

*Fill in the details 6.75. Use Theorems 6.41 and 6.67 to prove Theorem 6.74.

Proof: It is easy to see that

n
Z art =
k=0

a — ar™t!

1—r
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xExercise 6.76. Prove Theorem 6.74 without using Theorems 6.41 and 6.67. In other words,
mimic the proof of Theorem 6.67.

Notice that if |r|] < 1 then 7™ gets closer to 0 the larger n gets. More formally, if |r| < 1,

nh—>H<;lo r" = 0. This implies the following (which we will not formally prove beyond what we have

already said here).

Theorem 6.77. Let |r| < 1. Then

Example 6.78. A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down,
1/8 unit left, 1/16 unit up, etc., ad infinitum. In what coordinates does it end up?

Solution: Its z coordinate is

1 1.1 _1(1)0+1(1)1+1(1)2+ 2
2 8 32 T2\ 4 2\ 4 2\ 4 S 1-7 5
Its y coordinate is
o1 1 _( 1)0 (1)1+( 1)2+ 1 4
4 16 ~\ 4 4 4 -~ 1—-= B

Therefore, the fly ends up in (%, %) .

The following infinite sums are sometimes useful.
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Theorem 6.79. Let x € R. The following expansions hold:

sin x

COS T

Product notation is very similar to

adding them.

o0 (_1)nx2n+1

D

= (2n+1)!
0 (_1)nx2n
nz:‘; (2n)!
>

n=0

00
> "
n=0

3 .5 2n+1
G 5
= r— 4 q(=1)" :
Tty D G
2 4 2n
W@ %
= 14 (=1 .
ST S o T
2 8 x™
= 1+$+§+§+"'+H+
= l+ax+z2+23+---, if|z| <1

sum notation, except we multiply the terms instead of

we define

tively.

Definition 6.80. Let {a,} be a sequence. Then for 1 < m < n, where m and n are integers,

n

H A = Gmam+1 ** * Gnp-
k=m

As with sums, we call k the index and m and n the lower limit and upper limit, respec-

n
Example 6.81. Notice that n! = H k.
k=1

Note: An alternative way to express the variable and limits of sums and products is

Z a and

m<k<n

I

m<k<n



192 Chapter 6

6.3 Problems

Problem 6.1. Find at least three different sequences that begin with 1, 3, 7 whose terms are
generated by a simple formula or rule. By different, I mean none of the sequences can have exactly
the same terms. In other words, your answer cannot simply be three different ways to generate
the same sequence.

Problem 6.2. Let ¢, = 2¢,,_1 + 2n + 5, and ¢y = 0. Compute g1, ¢o, g3 and q4.
Problem 6.3. Let a, = a,_o +n, ag = 0, and a; = 1. Compute as, ag, as and as.
Problem 6.4. Let a,, = n X a,_1 + 5, and ag = 1. Compute a1, as, a3, a4 and as.

Problem 6.5. Define a sequence {x,} by g = 1, and x,, = 22,1 + 1 if n > 1. Find a closed
form for the nth term of this sequence. Prove that your solution is correct.

Problem 6.6. Compute each of the following:

40 3 4 logy n
) Dk (d) > &) > 2
k=5 i=1j=1 Jj=0
22 _ _ n logy n
(b) ;mﬂ“—zﬂ) (e) ,;k(k_” (h) ; (g)
n n n i J
) S 5k (t) X5 M2 21
E—0 j=1 i=1j=1k=1

Problem 6.7. Here is a standard interview question for prospective computer programmers: You
are given a list of 1,000,001 positive integers from the set {1,2,...,1,000,000}. In your list, every
member of {1,2,...,1,000,000} is listed once, except for x, which is listed twice. How do you
find what x is without doing a 1,000,000 step search?

Problem 6.8. Find a closed formula for
T,=12—-22 43> 42 4 ... 4 (-1)"1n2

Problem 6.9. Show that
1+3+5+ -+ (2n—1) =n?

Problem 6.10. Show that
z": B l n2+n
= k:4+k:2+1 2 n24+n+1

Problem 6.11. Legend says that the inventor of the game of chess, Sissa ben Dahir, asked the
King Shirham of India to place a grain of wheat on the first square of the chessboard, 2 on the
second square, 4 on the third square, 8 on the fourth square, etc..

(a) How many grains of wheat are to be put on the last (64-th) square?

(b) How many grains, total, are needed in order to satisfy the greedy inventor?
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(c¢) Given that 15 grains of wheat weigh approximately one gram, what is the approximate weight,
in kg, of the wheat needed?

(d) Given that the annual production of wheat is 350 million tonnes, how many years, approx-
imately, are needed in order to satisfy the inventor (assume that production of wheat stays
constant)?

Problem 6.12. It is easy to see that we can define n! recursively by defining 0! = 1, and if n > 0,
n!' =n-(n —1)!. Does the following method correctly compute n!? If not, state what is wrong
with it and fix it.

int factorial(int n) {
return n * factorial(n-1);
}

}

Problem 6.13. Obtain a closed formula for Z k-k!. (Hint: What is (k4 1)! — k!, and why does
k=1
it matter?)

Problem 6.14. A student turned in the code below (which does as its name suggests). I gave
them a ‘C’ on the assignment because although it works, it is very inefficient.

int sumFromOneToN(int n) {

int sum = O;
for(int i=1;i<=n;i++) {
sum = sum + i;
}
return sum;

}

(a) Write the ‘A’ version of the algorithm (in other words, a more efficient version). You can
assume that n > 1.

(b) Compute sumFromOneToN(30) based on your algorithm.

Problem 6.15. A student turned in the code below (which does as its name suggests). I gave
them a ‘C’ on the assignment because although it works, it is very inefficient.

int sumFromMToN(int m, int n) {
int sum = O0;
for(int i=1;i<=n;i++) {
sum = sum + 1i;
}
for(int i=1;i<m;i++) {
sum = sum - 1i;
}
return sum;

}

(a) Write the ‘A’ version of the algorithm (in other words, a more efficient version). You can
assume that 1 < m < n.

(b) Compute sumFromMToN(10,50) based on your algorithm.
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Chapter 7

Algorithm Analysis

In this chapter we take a look at the analysis of algorithms. The analysis of algorithms is a
very important topic in computer science. It allows us to determine and express how efficient an
algorithm is, and it is one of the tools that allows us to compare multiple algorithms that solve
the same problem.

Before we dive into that topic, we first discuss one of the most important tools used in algorithm
analysis—asymptotic notation. We will define several important notations, discuss some of the
useful properties of the notations, and provide many examples of two common ways of proving
things related to the notations. We will then discuss the relative growth rates of several common
functions, focusing on those that are relevant to the topic of algorithm analysis. We then move on
to the most important topic of the chapter in which we apply all of this material to the analysis of
algorithms, providing numerous examples of determining the computational complexity of various
algorithms. Finally, we discuss some of the most common time complexities that occur in the
study of algorithms.

7.1 Asymptotic Notation

Asymptotic notation is used to express and compare the growth rate of functions. In our case, the
functions will typically represent the running time of algorithms. We will define the asymptotic
notations in terms of nonnegative functions. You will find more general definitions of these
notations in other books, but they are more complicated, more difficult to understand, and harder
to work with. These added difficulties are a result of the possibility of the functions involved
being negative. But the main reason for our use of the notations is to express the running time of
algorithms. Since the running time of an algorithm is always nonnegative, there is really no good
reason to use the more cumbersome definitions. We will focus on the notations most commonly
used in the analysis of algorithms.

Asymptotic notation allows us to express the behavior of a function as the input approaches
infinity. In other words, it is concerned about what happens to f(n) as n gets larger, and is not
concerned about the value of f(n) for small values of n.

We will define four of the most commonly used notations (an allude to the definition of a
fifth), providing a few brief examples of each. We will then discuss some of the most important
and useful properties of these notations. Finally, we will present many more detailed examples.

7.1.1 The Notations

We begin with the most commonly used of the notations.

195
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Definition 7.1 (Big-O). Let f be a nonnegative function.

We say that f(n) is Big-O of g(n),
written as f(n) = O(g(n)), iff there
are positive constants ¢ and ng such
that

cg(n)

f(n) < cg(n) for all n > nyg.

f(n)

If f(n) = O(g(n)), f(n) grows
no faster than g(n). In other
words, g(n) is an asymptotic up-

f(n) = O(g(n))

per bound (or just upper bound) no
on f(n).
Note: The “=” in the statement “f(n) = O(g(n))” should be read and thought of as “is”,

not “equals.” You can think of it as a one-way equals. So saying f(n) = O(g(n)) is not

the same thing as saying O(g(n)) = f(n), for instance (with the latter statement not really
making sense).

An alternative notation is to write f(n) € O(g(n)) instead of f(n) = O(g(n)). It turns
out that O(g(n)) is actually the set of all functions that grow no faster than g(n), so the set
notation is actually in some sense more correct. The “=" notation is used because it comes in
handy when doing algebra. You can essentially think of these as being two different notations
(= and €) for the same thing. Similar statements are true for the other asymptotic notations.

Example 7.2. Prove that n? +n = O(n?).

Solution:  Here, we have f(n) = n? +n, and g(n) = n3. Notice that if n > 1,
n < n3 and n2 < nd. Therefore,

n2—|—n§n3—|—n3:2n3

Thus,
n?+n<2n3foralln>1.

Thus, we have shown that n? +n = O(n3) by definition of Big-O, with ng = 1,
and ¢ = 2.

The following fact is a generalization of what was used in the previous example. It is used
often in proofs involving asymptotic notation.

Theorem 7.3. If a and b are real numbers with a < b, then n® < nb whenever n > 1.

Proof:  We will not provide a proof, but it should be fairly clear intuitively that

this is true. If you cannot see why this is true, you should work out a few examples
to convince yourself. O
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Sometimes the easiest way to prove that f(n) = O(g(n)) is to take ¢ to be the sum of
the positive coefficients of f(n), although this trick doesn’t always work. We can usually easily
eliminate the lower order terms with negative coefficients if we make the appropriate assumption.
Let’s see how to do this in the next few examples.

Example 7.4. Prove that 3n% — 2n? 4+ 13n — 15 = O(n?).
Solution: First, notice that if n > 0, then —m?2—15< 0, so
3n® — 2n% 4+ 13n — 15 < 3n® + 13n.
Next, if n > 1, then 13n < 13n3. Therefore if n > 1,
3n® + 13n < 3n® + 13n® = 16n°.

Also notice that if n > 1, then n > 0. Thus, our first step is still valid if we assume
n > 1 since n > 1 is a stronger condition than n > 0. Putting this all together, if
we assume n > 1, then

3n3 + 13n
3n3 + 13n3
= 16n°.

3n® —2n% +13n— 15

Since we have shown that 3n3 — 2n? + 13n — 15 < 16n> for all n > 1, we have
proven that 3n3 — 2n% + 13n — 15 = O(n3).

We used ng = 1 and ¢ = 16 in our proof. It is not necessary to explicitly point this
out in our proof, though. We only do so to help you see the connection between
the proof and the definition of Big-O.

Example 7.5. Prove that 5n% — 3n + 20 = O(n?).

Solution: Ifn >1,

5n% —3n+20 < 5n?+20 (7.1)
< 5n%+20n?
= 2502 (7.3)

Since 5n2 — 3n + 20 < 2512 for all n > 1, 5n? — 3n + 20 = O(n?).

In this proof we used ¢ = 25 and ng = 1.

*Question 7.6. Answer the following questions related to Example 7.5.

(a) What allowed us to eliminate the —3n term in step 7.17
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(b) What is the justification for step 7.27

xEvaluate 7.7. Prove that 4n? — 12n + 10 = O(n?).

Solution: [# n > [, 4N —2A+IO < 4nE —2N- 40Nt = 2nE. Therefore,
dnZ — 2N +10 = O(nD.

Evaluation

Note: The values of the constants used in the proofs do not need to be the best possible. For
instance, if you can show that f(n) < 345¢g(n) for all n > 712, then f(n) = O(g(n)). It
doesn’t matter whether or not it is actually true that f(n) < 3g(n) for all n > 5.

*Question 7.8. Answer each of the following questions related to Example 7.5. Include a
brief justification.

(a) Could we have used ¢ = 50 in the proof?

Answer

(b) Could we have used ¢ = 2 in the proof?

Answer

(c) Could we have used ng = 100 in the proof?

Answer

(d) Could we have used ng = 0 in the proof?

Answer
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xExercise 7.9. Prove that 5n% — 4n* + 3n® — 2n? 4+ n = O(n®). (Hint: Use the same tech-
niques you saw in Example 7.5.)

*Question 7.10. What values did you use for ng and ¢ in your solution to Exercise 7.97

ng = , C=

Things are not always so easy. How would you show that (1/2)°6™ + log?n + n* = O(2")?
Or that n? = O(n? — 13n + 23)? In general, we simply (or in some cases with much effort) find
values ¢ and ng that work. This gets easier with practice.

Big-O is a notation to express the idea that one function is an upper bound for another
function. The next notation allows us to express the opposite idea—that one function is a lower
bound for another function.

Definition 7.11 (Big-Omega). Let f and g be nonnegative functions.

We say that f(n) is Big-Omega of
g(n), written as f(n) = Qg(n)), iff )
there are positive constants ¢ and ny
such that

cg(n) < f(n) for all n > ny

If f(n) = Qg(n), f(n) grows
no slower than g(n). In other
words, g(n) is an asymptotic lower
bound (or just lower bound) on

f(n). o

Example 7.12. Prove that n® + 4n? = Q(n?).

Proof: Here, we have f(n) = n3 + 4n?, and g(n) = n?. It is not too hard to



200 Chapter 7

see that if n > 1,
n? §n3 < nd 4+ 4n?

Therefore,
1n2<nd+4n?foralln>1

so n3 +4n? = Q(n?) by definition of 2, with ng = 1, and ¢ = 1. O

xExercise 7.13. Prove that 4n? + n + 1 = Q(n?). (This one should be really easy—follow
the technique from the previous example and don’t over think it.)

*Question 7.14. What values did you use for ng and ¢ in your solution to Exercise 7.137

ng = , C=

Proving that f(n) = Q(g(n)) often requires more thought than proving that f(n) = O(g(n)).
Although the lower-order terms with positive coefficients can be easily dealt with, those with
negative coefficients make things a bit more complicated. Often, we have to pick ¢ < 1. A good
strategy is to pick a value of ¢ that you think will work, and determine which value of ng is
needed. Being able to do some algebra helps. As it turns out, we won’t have to worry a whole
lot about this, though. We will see a different technique to prove bounds shortly that, when it
works, makes things much easier.

Our third notation allows us to express the idea that two functions grow at the same rate.

Definition 7.15 (Big-Theta). Let f and g be nonnegative functions.

We say that f(n) is Big-Theta of g(n),
written as f(n) = O(g(n)), iff there are
positive constants c1, co and ng such that

c19(n) < f(n) < cag(n) for all n > ng

If f(n) = O(g(n)), f(n) grows at the
same rate as g(n). In other words, g(n)
is an asymptotically tight bound (or
Just tight bound) on f(n). o
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Example 7.16. Prove that n? + 5n + 7 = O(n?)

Proof: When n > 1, n?4+5n+7<n?4+5n%+ T2 < 13n2
When n > 0, n2<n?24+5n+7.
Combining these, we can see that when n > 1,

n?<n?+4+5n+7<13n?,

so n?+5n+7 = O(n?) by definition of ©, with ng=1, ¢;=1, and c;=13. O

*Question 7.17. In the previous example, we combined two inequalities. One of them
assumed n > 0, the other assumed that n > 1. In the combined inequality, we said it held if
n > 1. Is that really O.K., or did we make a subtle error?

Answer

Using the definition of © can be inconvenient since it involves a double inequality. Luckily,
the following theorem provides us with an easier approach.

Theorem 7.18. If f and g are nonnegative functions, then f(n) = ©(g(n)) if and only if
f(n) =0(g(n)) and f(n) = Qg(n)).

Proof: The result follows almost immediately from the definitions. We leave
the details to the reader. O

This theorem implies that no new strategies are necessary for © proofs since they can be split
into two proofs—a Big-O proof and a {2 proof. Let’s see an example of this approach.

Example 7.19. Show that 3n® + 3n = O(n?)
Proof: Notice that if n > 1,

1 1 7
5712 +3n S 57742 +3n2 = 5712,

1
SO 5712 +3n = O(n?). Also, when n > 0,

n? < =n? + 3n,

N | —
N | —

1
SO §n2 +3n=Q(n?). Since in®+3n = O(n?) and in®+ 3n = Q(n?), then by
1
Theorem 7.18, 5712 +3n = 0(n?) O
How do you use asymptotic notation to express that f(n) grows slower than g(n)? Saying

f(n) = O(g(n)) doesn’t work, because that only tells us that f(n) grows no faster than g(n). It
might grow slower, but it also might grow at the same rate. With the notation we have, the best



202 Chapter 7

way to express this idea is to say that f(n) = O(g(n)) and f(n) # ©(g(n)). But that is awkward.
Let’s learn a new notation for this instead. For technical reasons that we won’t get into, this
notation has to be defined somewhat differently than the others.

Definition 7.20. Let f and g be nonnegative functions, with g being eventually non-zero.
We say that f(n) is little-o of g(n), written f(n) = o(g(n)) iff

If f(n) = o(g(n)), f(n) grows asymptotically slower than g(n).

Example 7.21. You should be able to convince yourself that 3n+2 = o(n?), but 3n+2 # o(n).
Similarly, n?+n+4 = o(n3) and n?+n+4 = o(n?), but n?+n+4 # o(n?) and n?+n+4 # o(n).

If you are not comfortable with limits you can still convince yourself of these statements
by thinking of the informal definition. For instance, n? + n + 4 grows slower than n? so
n? +n +4 = o(n?). On the other hand, n? + n + 4 grows at the same rate (so not slower
than) n?, so n? +n + 4 # o(n?).

*Question 7.22. Why do we require that g(n) be eventually non-zero in the definition of
little-o?

Answer

Little-omega (w) can be defined similarly to little-o, but the value of the limit is oo instead of
0. We won’t use w very often.

*Question 7.23. Big-O notation is analogous to < in certain ways. If so, what would be
the similar analogies for o and w?

Answer

Note:

e [t is important to remember that a O-bound is only an upper bound, and that it may
or may not be a tight bound. So if f(n) = O(n?), it is possible that f(n) = 3n? + 4,

n) = logn, or any other function that grows no faster than n?. But we also know
23 Y g

that f(n) #n> or any other function that grows faster than n?.

e Conversely, a Q-bound is only a lower bound. Thus, if f(n) = Q(nlogn), it might be
the case that f(n) = 2", but we know that f(n) # 3n, for instance.

e Unlike the other bounds, ©-bounds are precise. So, if f(n) = ©(n?), then we know that
f has a quadratic growth rate. It might be that f(n) = 3n?, 2n% — 43n — 4, or even
n? + nlogn. But we are certain that the fastest growing term of f is ¢n® for some
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constant c.

*Question 7.24. Answer the following questions about the asymptotic notations.

(a) If f(n) =0O(g(n)), is it possible that f(n) = o(g(n))? Explain.

(b) If f(n) = O(g(n)), is it possible that f(n) = o(g(n))? Explain.

(c¢) If f(n) =0(g(n)), is it certain that f(n) = o(g(n))? Explain.

(d) If f(n) =o(g(n)), is it possible that f(n) = O(g(n))? Explain.

*«Evaluate 7.25. Let ag,...,a; € R, where a; > 0. Prove that aiyn® + ap_1n*~1 +--- +
ain + ag = O(nF).

Solution I: We can first eliminate all of the constants since they Become
irrelevant as N arows larae enouch. This leaves us with Nk+nk—+4...4n =
O(NM). Next we can eliminate all terms arowing slower than Nk, since they
also recome irrelevant as N arows. This leaves us with Nt = O(NX), and
since they are the same, they are effectively theta of each other, and By
definition, anything that is theta of something is also omeaa and O, so
we can correctly say that Nk = O(NK), thus provina that agnk+a, N+ .+
an=+ap = O(NS.

Evaluation
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i=0

an+a, N+ 4an+as <
<

IA

Evaluation

k
Solution 2: Let e= ) |aj| Then if n>1,

Therefore, aunc +a, N +4... +a3n+a5 = ONK).

Chapter 7

o NS+ [a [N 4+ g In+ Jag|

|3 N+ [a [N+ -+ [ay|n" + [ap|n"
k
> lailnk = on*.

i=O

Answer

xExercise 7.26. Assume that f(n) = O(n?) and g(n) = O(n®). What can you say about
the relative growth rates of f(n) and g(n)? In particular, does g(n) grow faster than f(n)?

Keep in mind that asymptotic notation only allows you to compare the asymptotic behavior
of functions. Except for ©-notation, it only provides a bound on the growth rate. For instance,
knowing that f(n) = O(g(n)) only tells you that f(n) grows no faster than g(n). It is possible

that f(n) grows a lot slower than g(n).

instance, f(n) = n and g(n) = n%.

*Exercise 7.27. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample. Justifications
can appeal to a definition and/or theorem. For counterexamples, use simple functions. For

(a) __If f(n) = O(g(n)), then f(n) grows faster than g(n)

(b) __If f(n) =0O(g(n)), then f(n) grows faster than g(n)

(¢) ___If f(n) = O(g(n)), then f(n) grows at the same rate as g(n)
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(d) __If f(n) =Q(g(n)), then f(n) grows faster than g(n)

(e) __If f(n) = O(g(n)), then f(n) = Q(g(n))

(f) __If f(n) = ©(g(n)), then f(n) = O(g(n))

(g) __If f(n) = O(g(n)), then f(n) = O(g(n))

(h) __If f(n) = O(g(n)), then g(n) = O(f(n))

7.1.2 Properties of the Notations

There are a lot of properties that hold for Big-O, © and € notation (and o and w as well, but we
won’t focus on those ones in this section). We will only present a few of the most important ones.
We provide proofs for some of the results. The rest can be proven without too much difficulty
using the definitions of the notations.

Before we present the properties, it might be useful to think about the properties of things
you are already familiar with. For instance, given real numbers z, y and z, you know that if z <y
and y < z, then x < 2. This is just the transitive property of <. Similarly, you know that if
x <y, then ax < ay for any positive constant a. You can think of Big-O notation as being like
<, © notation as being like =, and () notation as being like >. Many of the properties of <, =
and > that you are already familiar with have an analog with Big-O, O, and {2 notation. But you
need to be careful because the analogies are not exact. For instance, constants cannot be ignored
with inequalities but can be ignored when using asymptotic notation.

Theorem 7.28. The transitive property holds for Big-O, ©, and 2. That is,

o If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
o If f(n) = ©(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))
o If f(n) = Q(g(n)) and g(n) = Q(h(n)), then f(n) = Q(h(n))

Proof: You will prove the transitive property of Big-O in Exercise 7.49. The
proofs of the other two are very similar. O

Theorem 7.28 is pretty intuitive. For instance, when applied to Big-O notation, Theorem 7.28
is essentially stating that if g(n) is an upper bound on f(n) and h(n) is an upper bound on g(n),
then h(n) is an upper bound for f(n). Put another way, if f(n) grows no faster than g(n) and
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g(n) grows no faster than h(n), then f(n) grows no faster than h(n). This makes perfect sense if
you think about it for a few minutes.

Example 7.29. Let’s take it for granted that 4n? + 3n + 17 = O(n?®) and n® = O(n?) (both
of which you should be able to easily prove at this point). According to Theorem 7.28, we
can conclude that 4n? + 3n + 17 = O(n?).

Theorem 7.30. Scaling by a constant factor

If f(n) = O(g(n)), then for any k >0, kf(n) = O(g(n)).
Similarly for © and €.

Proof: We will give the proof for Big-O notation. The other two proofs are
similar. Assume f(n) = O(g(n)). Then by the definition of Big-O, there are
positive constants ¢ and ny such that f(n) < cg(n) for all n > ng. Thus, if
n = no,

kf(n) < kcg(n) =dg(n),
where ¢ = k ¢ is a positive constant. By the definition of Big-O, kf(n) = O(g(n)).
O

Example 7.31. Example 7.19 showed that £n® + 3n = ©(n?). We can use Theorem 7.30 to
conclude that n? 4+ 6n = O(n?) since n? + 6n = 2 (%nQ + 3n> .

Perhaps now is a good time to point out a related issue. Typically, we do not include constants
inside asymptotic notations. For instance, although it is technically correct to say that 34n® +
2n2 —45n +5 = O(5n3) (or O(50n3), or any other constant you care to place there), it is best to
just say it is O(n3). In particular, ©(1) may be preferable to O(k).

Theorem 7.32. Sums
If fi(n) = O(g1(n)) and fa(n) = O(ga(n)), then

fi(n) + fa(n) = O(g1(n) + g2(n)) = O(maz{gi(n), g2(n)}).
Similarly for © and €.

Proof:  We will prove the assertion for Big-O. Assume fi(n) = O(g1(n)) and
fa(n) = O(g2(n)). Then there exists positive constants c; and ny such that for all
n 2= ni,

fi(n) < c1g1(n),

and there exists positive constants cy and no such that for all n > na,

fa(n) < cag2(n).

Let ¢y = max{cy,co} and ng = max{ni,na}. Since ng is at least as large as nq
and ngy, then for all n > ng, fi(n) < c1g1(n) and fao(n) < caga(n). (If you don’t
see why this is, think about it. This is a subtle but important step.) Similarly, if
fi(n) < c1g1(n), then clearly f1(n) < cog1(n) since cq is at least as big as ¢; (and
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similarly for fa). Then for all n > ng, we have

fi(n) + fa(n) c191(n) + caga(n)

cog1(n) + cog2(n)

co[g1(n) + g2(n)]

co[max{gi(n), g2(n)} + max{g1(n), g2(n)}]
2co max{g1(n), g2(n)}

cmax{gi(n),g2(n)},

(VAN VAN VAN VAR VAN VAN

where ¢ = 2¢g. By the definition of Big-O, we have shown that fi(n) + fa(n) =
O(maz{gi1(n),g2(n)}). O

Notice that in this proof we used ¢ = 2max{cy,ce} and ng = max{ni,na}.

Without getting too technical, the previous theorem implies that you can upper bound the
sum of two or more functions by finding the upper bound of the fastest growing of the functions.
Another way of thinking about it is if you ever have two or more functions inside Big-O notation,
you can simplify the notation by omitting the slower growing function(s). It should be pointed
out that there is a subtle point in this result about how to precisely define the maximum of two
functions. Most of the time the intuitive definition is sufficient so we won’t belabor the point.

Example 7.33. Since we have previously shown that 5n? — 3n + 20 = O(n?) and that
3n3 — 2n% 4+ 13n — 15 = O(n3), we know that (5n% — 3n + 20) + (3n® — 2n? + 13n — 15) =
O(n? +n3) = O(n?).

Theorem 7.34. Products
If fi(n) = O(g1(n)) and fo(n) = O(g2(n)), then

f1(n) fa(n) = O(g1(n)g2(n)).
Similarly for © and €.

Example 7.35. Since we have previously shown that 5n% — 3n + 20 = O(n?) and that
3n3 — 2n? 4 13n — 15 = O(n?), we know that (5n% — 3n + 20)(3n® — 2n? + 13n — 15) =
O(n®*n?®) = O(n®). Notice that we could arrive at this same conclusion by multiplying the
two polynomials and taking the highest term. However, this would require a lot more work
than is necessary.

The next theorem essentially says that if g(n) is an upper bound on f(n), then f(n) is a lower
bound on g(n). This makes perfect sense if you think about it.

Theorem 7.36. Symmetry (sort of)
f(n) =0(g(n)) iff g(n) = Q(f(n)).

It turns out that © defines an equivalence relation on the set of functions from Z* to Z*.
That is, it defines a partition on these functions, with two functions being in the same partition
(or the same equivalence class) if and only if they have the same growth rate. But don’t take our
word for it. You will help to prove this fact next.
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«Fill in the details 7.37. Let R be the relation on the set of functions from Z* to Z* such
that (f,g) € R if and only if f = ©(g). Show that R is an equivalence relation.

Proof: We need to show that R is reflexive, symmetric, and transitive.
Reflexive: Since 1- f(n) < f(n) <1- f(n) for alln > 1, f(n) = 6(f(n)), so R
is reflexive.

Symmetric: If f(n) = O(g(n)), then there exist positive constants ¢y, ¢o, and

ng such that
This implies that

g(n) < — f(n) and g(n) > — f(n) for all n > no
Cc1 C2

which is equivalent to

<g(n) < for all n > ny.

Thus g(n) = O(f(n)), and R is symmetric.
Transitive: If f(n) = ©(g(n)), then there exist positive constants ¢, c2, and ng
such that

c1g(n) < f(n) < cag(n) for all n > nyg.

Similarly if g(n) = ©(h(n)), then there exist positive constants c3, ¢4, and n;

such that
Then
f(n) > c1g(n) > cieg h(n) for all n > max{ng, n1},
and
f(n) < g(n) < h(n) for all n >
Thus,
< f(n) < for all n > max{ng, n1}.
Since ¢jc3 and cyeq are both positive constants, f(n) = by the
definition of , 80 R is . O

Example 7.38. The functions n?, 3n% — 4n + 4, n? 4 logn, and 3n? + n + 1 are all ©(n?).
That is, they all have the same rate of growth and all belong to the same equivalence class.
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*Exercise 7.39. Let’s test your understanding of the material so far. Answer each of the
following true/false questions, giving a very brief justification/counterexample. Justifications

can appeal to a definition and/or theorem. For counterexamples, use simple functions. For

instance, f(n) = n and g(n) = n?.

(a) __If f(n) = O(g(n)), then g(n) = Q(f(n))

(b) __If f(n) = ©(g(n)), then f(n) = Q(g(n)) and f(n) = O(g(n))

(¢) __If fi(n) = O(g1(n)) and fa(n) = O(g2(n)), then fi(n)+fa(n) = O(maz(g1(n), g2(n)))

(d) __f(n) = O(g(n)) iff f(n) =O(g(n))

(€) __f(n) = O(g(n)) iff g(n) = O(f(n))

(f) __f(n) =0(g(n)) iff g(n) = Q(f(n))

(&) —_f(n) =0O(g(n)) iff f(n)=Qg(n)) and f(n) = O(g(n))

(h) __If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n))

7.1.3 Proofs using the definitions

In this section we provide more examples and exercises that use the definitions to prove bounds.

The first example is annotated with comments (given in footnotes) about the techniques that
are used in many of these proofs. We use the following terminology in our explanation. By lower
order term we mean a term that grows slower, and higher order means a term that grows faster.
The dominating term is the term that grows the fastest. For instance, in 23 4+ 722 —4, the 22 term
is a lower order term than 22, and 22 is the dominating term. We will discuss common growth
rates, including how they relate to each other, in Section 7.2. But for now we assume you know
that 2 grows faster than 23, for instance.
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Example 7.40. Find a tight bound on f(n) = n® 4+ Tn’ — 10n° — 2n* 4 3n% — 17.

Solution: We will prove that f(n) = ©(n®). First, we will prove an upper
bound for f(n). It is clear that when n > 1,

n® + 7" —10n® — 2n* +3n% — 17 < n®+ 7" +3n% @
nd+ 8 +3n8 0
11n8

IA

Thus, we have
fln)= n® + 7" —10n° — 2n* 4+ 3n2 — 17 < 1108 for all n > 1,

and we have proved that f(n) = O(n®).

Now, we will prove the lower bound for f(n). When n > 1,

> 8 —10n° —2n* — 17 ©
> n®—10n" —2n" — 170" ¢

= n8—29n7

n® + 7" —10n° — 2n* + 3n% — 17

Next, we need to find a value ¢ > 0 such that n® — 29n” > cn®. Doing a little
algebra, we see that this is equivalent to (1 — ¢)n® > 29n”. When n > 1, we can
divide by n” and obtain (1 — ¢)n > 29. Solving for ¢ we obtain

29
c<1l——.
n

If n > 58, then ¢ = 1/2 suffices. We have just shown that if n > 58, then

1
f(n) = n® + 7" —10n° —2n* +3n2% — 17 > §n8.

Thus, f(n) = Q(n®). Since we have shown that f(n) = Q(n%) and that f(n) =
O(n®), we have shown that f(n) = O(n?).

“We can upper bound any function by removing the lower order terms with negative coefficients, as long

as n > 0.

*We can upper bound any function by replacing lower order terms that have positive coefficients by the

dominating term with the same coefficients. Here, we must make sure that the dominating term is larger than
the given term for all values of n larger than some threshold ng, and we must make note of the threshold value
no.

“We can lower bound any function by removing the lower order terms with positive coefficients, as long as

n > 0.

9We can lower bound any function by replacing lower order terms with negative coefficients by a sub-

dominating term with the same coefficients. (By sub-dominating, I mean one which dominates all but the
dominating term.) Here, we must make sure that the sub-dominating term is larger than the given term for
all values of n larger than some threshold ng, and we must make note of the threshold value ng. Making a
wise choice for which sub-dominating term to use is crucial in finishing the proof.

Let’s see another example of a €2 proof. You should note the similarities between this and the

second half of the proof in the previous example.
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Example 7.41. Show that (nlogn —2n + 13) = Q(nlogn)

Proof: We need to show that there exist positive constants ¢ and ngy such that
cnlogn < nlogn —2n + 13 for all n > nyg.
Since nlogn —2n < nlogn — 2n + 13, we will instead show that
cnlogn < nlogn — 2n,

which is equivalent to
c<1-—

, when n > 1.
logn

If n > 8, then 2/(logn) < 2/3, and picking ¢ = 1/3 suffices. In other words, we
have just shown that if n > 8,

1
gnlogn < nlogn —2n.
Thus if ¢ = 1/3 and ng = 8, then for all n > ny, we have

cnlogn <nlogn —2n <nlogn —2n+ 13.

Thus (nlogn —2n + 13) = Q(nlogn). O

*Fill in the details 7.42. Show that %nQ —3n = 0(n?)

Proof: We need to find positive constants c1, ¢o, and ng such that

1
§§n2—3n§ for all n > ng
Dividing by n?, we get
c < <c
Notice that if n > 10,
1 3,1 3 _ ,
2 n 2 10

so we can choose ¢; = 1/5. If n > 10, we also have that % — % < %, SO we can
choose cg = 1/2. Thus, we have shown that

<-n?-3n< for all n >

DO | =

Therefore, in? — 3n = O(n?). O
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*Question 7.43. In the previous proof, we claimed that if n > 10,

3

n

>1_ 3
- 10

N —
N —

Why is this true?

Answer

Example 7.44. Show that (1/2)°6™ = O(y/n), where the base of the log is 2.

Proof: It is not too hard to see that
(V2)8™ = plosVE _ plogz/? _ pdlosz _

Thus it is clear that (v/2)1°8" = O(y/n). O

Note: You may be confused by the previous proof. It seems that we never showed that
(V2)1°8™ < ¢y/n for some constant c. But we essentially did by showing that (v/2)18™ = \/n
since this implies that (v/2)°8™ < 1y/n.

We actually proved something stronger than was required. That is, since we proved the
two functions are equal, it is in fact true that (v/2)'°8™ = ©(y/n). But we were only asked to
prove that (v/2)1°6™ = O(y/n).

In general, if you need to prove a Big-O bound, you may instead prove a © bound, and
the Big-O bound essentially comes along for the ride.

*Question 7.45. In our previous note we mentioned that if you prove a © bound, you get
the Big-O bound for free.

(a) What theorem implies this?

Answer

(b) If we prove f(n) = O(g(n)), does that imply that f(n) = 0(g(n))? In other words, does
it work the other way around? Explain, giving an appropriate example.

Answer
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xExercise 7.46. Show that n! = O(n™). (Don’t give up too easily on this one—the proof is
very short and only uses elementary algebra.)

Example 7.47. Show that log(n!) = O(nlogn)

Proof: It should be clear that if n > 1, n! < n™ (especially after completing
the previous exercise). Taking logs of both sides of that inequality, we obtain

logn! <log(n") = nlogn.
Therefore log n! = O(nlogn). O

The last step used the fact that log(f(n)*) = alog(f(n)), a fact that we assume you have
seen previously (but may have forgotten).

Proving properties of the asymptotic notations is actually no more difficult than the rest of
the proofs we have seen. You have already seen a few and helped write one. Here we provide one
more example and then ask you to prove another result on your own.

Example 7.48. Prove that if f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) = ©(g(n)).
Proof: 1If f(n) = O(g(n)), then there are positive constants ¢y and n(, such that
f(n) < cag(n) for all n > ny,
Similarly, if g(z) = O(f(z)), then there are positive constants ¢j and n{ such that
g(n) < ¢ f(n) for all n > ny.

We can divide this by ¢} to obtain

1
ag(n) < f(n) for all n > ng.
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Setting ¢; = 1/¢} and ng = max{ng, ng}, we have
c19(n) < f(n) < cog(n) for all n > ny.

Thus, f(x) = ©(g(x)). O

xExercise 7.49. Let f(z) = O(g(z)) and g(z) = O(h(z)). Show that f(x) = O(h(x)). That
is, prove Theorem 7.28 for Big-O notation.
Proof:

7.1.4 Proofs using limits

So far we have used the definitions of the various notations in all of our proofs. The following
theorem provides another technique that is often much easier, assuming you understand and are
comfortable with limits.

Theorem 7.50. Let f(n) and g(n) be functions such that

lim f(n) A.

n—o0 g(n)
Then
1. If A=0, then f(n) = O(g(n)), and f(n) # ©(g(n)). That is, f(n) = o(g(n)).
2. If A= oo, then f(n) = Q(g(n)), and f(n) # O(g(n)). That is, f(n)=w(g(n)).
3. If A+ 0 is finite, then f(n) = ©(g(n)).



Asymptotic Notation 215

If the above limit does not exist, then you need to resort to using the definitions or using
some other technique. Luckily, in the analysis of algorithms the above approach works most of
the time.

Before we see some examples, let’s review a few limits you should know.

Theorem 7.51. Let a and ¢ be real numbers. Then

@ Jima=a

(b) If a >0, lim n® =0

n— o0

(c) Ifa<0, lim n®*=0

n—oo

(d) Ifa>1, lim a" = o0

n— o0

o
(e) If0<a<1,nh_>néoa =0

(f) If ¢>0, lim log,n = oo.

Example 7.52. The following are examples based on Theorem 7.51.
(a) lim 13 =13

n—0o0

®) Jim,n =0

(¢) lim n* =00
n—o0

(@ Jim, 0! = o0

(e) lim n72=0

n—o0
: "
@ Jim () =0

(g) lim 2" = o0

n—o0

(h) lim logy n = oo

Now it’s your turn to try a few.

xExercise 7.53. Evaluate the following limits

(a) lim logign =

. 3 _
(b) Jimn" =




216

(¢) lim 3" =

(g) nh_)lréo 8675309 =

Chapter 7

Example 7.54. Prove that 5n% = ©(n®) using Theorem 7.50.

Solution: Notice that

8

n—oo n, n—00

so f(n) = ©(n®) by Theorem 7.50 (case 3).

The following theorem often comes in handy when using Theorem 7.50.

1
Theorem 7.55. If&l_)ﬁ;o f(n) = oo, then Jim IOl = 0.

Example 7.56. Prove that n? = o(n*) using Theorem 7.50.

Solution: Notice that

2
..on . 1
lim — = lim — =0,
n—oo N n—o0o N

so f(n) = o(n®) by Theorem 7.50 (case 1).

where?

Answer

*Question 7.57. The proof in the previous example used Theorems 7.51 and 7.55. How and
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xExercise 7.58. Prove that 323 = Q(z?) using Theorem 7.50. Which case did you use?

Here are a few more useful properties of limits. Read carefully. These do not apply in all
situations.

Theorem 7.59. Let a be a real number and let nh—%o f(n) = A and nll_r){.lo g(n) = B, where A
and B are finite real numbers. Then

(@) lim af(n)=aA

(b) lim f(n)+g(n) =A+B
(¢) lim f(n)g(n) = AB

f(n)
9

. A
(d) If B #0, nh_{rolong

We usually use the results from the previous theorem without explicitly mentioning them.

Example 7.60. Find a tight bound on f(z) = 2® + 727 — 102° — 22* + 322 — 17 using
Theorem 7.50.

Solution:  We guess (or know, if we remember the solution to Example 7.40)
that f(z) = ©(2®). To prove this, notice that

x84+ T72"—1025— 224 +322 17 o2 7" 1025 22t 32?2 17
lim = [l —=dtamcc0 " ———d — — —
e 8 T—300 18 8 8 8 8 8
C hm el 0 2 3 7
= S T T B AT B

= 1+0-0-04+0-0=1
Thus, f(z) = ©(x®) by the Theorem 7.50.

Compare the proof above with the proof given in Example 7.40. It should be pretty obvious
that using Theorem 7.50 makes the proof a lot easier. Let’s see another example that lets us
compare the two proof methods.

Example 7.61. Prove that f(x) = 2* — 2323 + 1222 + 152 — 21 = O(z*).
Proof #1
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We will use the definition of ©. It is clear that when =z > 1,
2t — 2323 + 1222 + 1520 — 21 < 2% + 1222 + 152 < 2% + 122 + 152 = 2822,

Also, if x > 88, then %:174 > 4423 or —44x3 > —%x‘l, so we have that

1
2t 232341222+ 152 —21 > 24— 2323 —21 > 22— 2323 — 2123 = 2% — 4423 > §x4.
Thus 1

5:54 <zt — 2323 + 1222 + 152 — 21 < 28z*, for all 2 > 88.
We have shown that f(z) = 2% — 232 + 1222 + 152 — 21 = O(x?). O

If you did not follow the steps in this first proof, you should really review your
algebra rules.

Proof #2
Since
ozt —2323 + 1222 + 152 — 21 oozt 2323 1222 15z 21
lim = lim ———+4+—+ — — —
P 74 00 ph T4 74 74 74
B 23 12 15 21
T ihe g 2 3
= lim1-0+04+40-0=1,
xr—r 00
f(z) = z* — 2323 + 1222 + 15z — 21 = O(z*) O

Example 7.62. Prove that n(n + 1)/2 = O(n3) using Theorem 7.50.

1)/2 2 1 1
Proof: Notice that lim m = lim nn =lm —4+-—=0+0=0,
n—00 n3 n—oo 9In3 n—oo 2n In2
so n(n +1)/2 = o(n3), which implies that n(n + 1)/2 = O(n?). O

xExercise 7.63. Prove that n(n + 1)/2 = ©(n?) using Theorem 7.50.
Proof:




Asymptotic Notation 219

xExercise 7.64. Prove that 2% = O(3%)

(a) Using Theorem 7.50.

(b) Using the definition of Big-O.

Now is probably a good time to recall a very useful theorem for computing limits, called
I’Hopital’s Rule. The version presented here is restricted to limits where the variable approaches
infinity since those are the only limits of interest in our context.

Theorem 7.65 ('Hopital’s Rule). Let f(x) and g(x) be differentiable functions. If

lim f(z)= lim g(z) =0 or

T—00 T—>00

lim f(z)= lim g(z) = oo,

T—00 T—>00

then
flz) _ . fl(=z)
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Example 7.66. Since lim 3z = oo and lim 22 = oo,
T—00 T—r00

lim — = lim ; (PHopital)

T300 2 500 Q.

Example 7.67. Since lim 3z + 42z — 9 = co and lim 12z = oo,
r—r00 r—r00

. 322 4+4x2 -9 . bx+4 .
xlg{)lo —r :Eh—>Holo 15 (PHopital)
3%t
= 0

Now let’s apply it to proving asymptotic bounds.

Example 7.68. Show that logz = O(z).

Proof: Notice that

. logx . % , .
Jim. = Jim T (PHopital)
= lim 1 =0.
T—00

Therefore, logx = O(x).
We should mention that applying ’'Hopital’s Rule in the first step is legal since
lim logz = lim z = oo.
T—r00

T—r00

Example 7.69. Prove that 23 = O(27).

Proof: Notice that

.l . S s
Jim. = = Jim () (PHopital)
. 6x R
= lim m (PHopital)
. 6 T
= 0.

Therefore, 23 = O(2%).

Chapter 7
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As in the previous example, at each step we checked that the functions on both
the top and bottom go to infinity as n goes to infinity before applying I’'Hopital’s
Rule. Notice that we did not apply it in the final step since 6 does not go to
infinity. 0

*Evaluate 7.70. Prove that 7% is an upper bound for 5%, but that it is not a tight bound.

Proof |- This is true if and only if T always arows faster than S which
means * — 5% > O for all x # O. I it is a tight BOUNd, then T* — S = O,
which is only true for x = O. So T is an upper Bound on 5% put Not a
tight round.

Evaluation

Sx xloaS

Proot 2: lim — = lim . Both go to infinity, But xloaT gets there
x—o00 X x—oo X|l0og T

faster, showing that S5 = O(T).

Evaluation

x—o00 5% x—oo \ S

Proof 3:  lim i lina (1) = oo since 1/S > | Thus 5S¢ = O(T) By the limit

theorem.

Evaluation

We should mention that it is important to remember to verify that I’Hopital’s Rule applies before
just blinding taking derivatives. You can actually get the incorrect answer if you apply it when
it should not be applied.

Example 7.71. Find and prove a simple tight bound for v/5n? — 4n + 12.

Solution: ~ We will show that v/5n? — 4n + 12 = O(n). Since we are letting n
go to infinity, we can assume that n > 0. In this case, n = v'n2. Using this, we

can see that

V5n2 —4 12 5n? — 4 12 4 12
lim " nt = lim %:hm 5———0——2:\/5.
W= n n—00 n n—00 n o n

Therefore, v5n? — 4n + 12 = O(n).
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xExercise 7.72. Find and prove a good simple upper bound on nIn(n? + 1) + n?Inn.

(a) Using the definition of Big-O.

(b) Using Theorem 7.50. You will probably need to use 'Hopital’s Rule a few times.
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Example 7.73. Find and prove a simple tight bound for nlog(n?) + (n — 1)?log(n/2).

Solution: First notice that
nlog(n?) + (n — 1)*log(n/2) = 2nlogn + (n — 1)?>(log n — log 2).

We can see that this is ©(n?logn) since

. nlog(n?) + (n —1)%log(n/2) . 2nlogn + (n —1)*(logn — log 2)
lim = lim
n—00 n2logn n—00 n?logn
2 — 1) —
— w2 (n—1)% (logn — log2)
n—oo n n?2 logn
2 1?2 log 2
- lim—+(1——) (1— Og)
n—oo n n logn

= 04+(1-0%1-0)=1.

xExercise 7.74. Find and prove a simple tight bound for (n? — 1)®. You may use either the
formal definition of © or Theorem 7.50. (The solution uses Theorem 7.50.)
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*xExercise 7.75. Find and prove a simple tight bound for 2"+ 4+ 5”1, You may use either
the formal definition of © or Theorem 7.50. (The solution uses Theorem 7.50.)
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7.2 Common Growth Rates

In this section we will take a look at the relative growth rates of various functions.

Figure 7.1 shows the value of several functions logn n | nlogn | n? n? on
for various values of n to give you an idea of 0 1 0 1 1 2
their relative rates of growth. The bottom of 0.6931 2 1.39 4 8 4
the table is labeled relative to the last column 1.099 31 3.30 9 21 8
t £ h ] 1 1. 386 4 5.55 16 64 16

so you can get a sense of how slow logm 1609 51 sosl 25| 1925 39
and log(logm) grow. For instance, the final 1.792 61 100751 36| 216 64
row is showing that log,(262144) = 18 and 1.946 7] 13.62 | 49| 343 128
log, (10g2(262144)) = 2.890. 2.079 8| 16.64 | 64| 512 256
2.197 9| 19.78 81 729 512

. . 2.303 10 | 23.03 | 100 | 1000 1024
Figures 7.2 and 7.3 are attempting to demon- 2.398 111 26.38 | 121 | 1331 2048
strate that as n increases, the constants and 2.485 12 | 29.82 | 144 | 1728 4096
lower-order terms do not matter. For instance, 2.565 1i 33.34 | 169 | 2197 8192
. . n 2.639 1 36.95 | 196 | 2744 16384
notice that although 100n is much largez thafn 2 5. 708 15 | 40.62 | 225 | 3375 | 39768
for small values of n, as n increases, 2" quickly 2. 773 16 | 44.36 | 256 | 4096 | 65536
gets much larger than 100n. Similarly, in Figure 2.833 17 | 48.16 | 289 | 4913 | 131072
7.3, notice that when n = 74, n3 and n?® + 234 2.890 18 | 52.03 | 324 | 5832 | 262144
are virtually the same. loglogm | logm m

Figure 7.1: A comparison of growth rates

n | 100n | n® | 11n? n® 2" n n? | n®—n | n®4+99 n® | n® 4234
1 100 1 11 1 2 2 4 2 103 8 242
2 200 4 44 8 4 6 36 30 135 216 450
3 300 9 99 27 8 10 | 100 90 199 1000 1234
4| 400 | 16 176 64 16 14 | 196 182 295 2744 2978
5 500 25 275 125 32 18 324 306 423 5832 6066
6 600 | 36| 396 | 216 64 22 | 484 462 583 | 10648 10882
7 700 | 49| 539 | 343 128 26 | 676 650 775 17576 17810
8 800 64 704 512 256 30 900 870 999 27000 27234
9 900 | 81 891 | 729 512 34 | 1156 1122 1255 | 39304 39538
10 | 1000 | 100 | 1100 | 1000 1024 38 | 1444 1406 1543 | 54872 55106
11 | 1100 | 121 | 1331 | 1331 2048 42 | 1764 1722 1863 74088 74322
12 | 1200 | 144 | 1584 | 1728 4096 46 | 2116 2070 2215 | 97336 97570
13 | 1300 | 169 | 1859 | 2197 8192 50 | 2500 2450 2599 | 125000 125234
14 | 1400 | 196 | 2156 | 2744 16384 54 | 2916 2862 3015 | 157464 157698
15 | 1500 | 225 | 2475 | 3375 | 32768 58 | 3364 3306 3463 | 195112 195346
16 | 1600 | 256 | 2816 | 4096 | 65536 62 | 3844 3782 3943 | 238328 238562
17 | 1700 | 289 | 3179 | 4913 | 131072 66 | 4356 4290 4455 | 287496 287730
18 | 1800 | 324 | 3564 | 5832 | 262144 70 | 4900 4830 4999 | 343000 343234
19 | 1900 | 361 | 3971 | 6859 | 524288 74 | 5476 5402 5575 | 405224 405458
Figure 7.2: Constants don’t matter Figure 7.3: Lower-order terms don’t matter

Figures 7.4 through 7.8 give a graphical representation of relative growth rates of functions.
In these diagrams, ** means exponentiation. For instance, x**2 means z2.

It is important to point out that you should never rely on the graphs of functions to determine
relative growth rates. That is the point of Figures 7.6 and 7.7. Although graphs sometimes give
you an accurate picture of the relative growth rates of the functions, they might just as well

present a distorted view of the data depending on the values that are used on the axes. Instead,
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Slow Growing Functions Polynomial Functions
40000 H w w w
35000 {

e

Figure 7.4: The growth rate of some slow Figure 7.5: The growth rate of some polyno-
growing functions. mials.

Fast Growing Functions Part 1

5000 : ‘ : — Fast Growing Functions Part 2

x 500000 ‘ ‘ ‘
4500 - XE*B === 7 X
4000 + X*fs‘% .......... i 450000 - X**3 7
2~A:.-k X 400000 - XXX L wevennefe i
3500 - s 7 ikt
3000 - _:: i 350000 1
2500 - ] 300000 .
2000 - | 250000 - A
1500 | ] 200000 - 1
1000 - 150000 ]
500 0000 S 1
0 ‘ et aammmm seoo0 e N
0 2 4 0 SO PP T L) .
0 5 10 15 20

Figure 7.6: The growth rate of some polyno-
mials and an exponential. This graph makes it
look like 2* is growing faster than 2%. But see
Figure 7.7.

Figure 7.7: The growth rate of some polyno-
mials and an exponential. If we make n large
enough, it is clear that 2" grows faster than n?.

Why Constants and Non-Leading Terms Don’t Matter

Ae+08 ‘ ‘ 1000000%X ===~ <
3.5e+08 | 30000072+ 300" —_—

3et+08 [
2.5e+08
2e+08
1.5e+08
1e+08
5e+07
0

0 5 10 15 20 25 30

Figure 7.8: Notice that as n gets larger, the constants eventually matter less.

you should use the techniques we develop in this section.

Next we present some of the most important results about the relative growth rate of some
common functions. We will ask you to prove each of them. Theorems 7.50 and 7.65 will help
you do so. You will notice that most of the theorems are using little-o, not Big-O. Hopefully you
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understand the difference. If not, review those definitions before continuing.
We begin with something that is pretty intuitive: higher powers grow faster than lower powers.

Theorem 7.76. Let a < b be real numbers. Then n® = o(n?).

Example 7.77. According to Theorem 7.76, n? = o(n?) and n® = o(n>?!).

xExercise 7.78. Prove Theorem 7.76. (Hint: Use Theorem 7.50 and do a little algebra
before you try to compute the limit.)

The next theorem tells us that exponentials with different bases do not grow at the same rate.
More specifically, the higher the base, the faster the growth rate.

Theorem 7.79. Let a < b be real numbers. Then a™ = o(b™).

Example 7.80. According to Theorem 7.79, 2" = o(5") and 4" = o(4.5™).

xExercise 7.81. Prove Theorem 7.79. (See the hint for Exercise 7.78.)
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Recall that a logarithmic function is the inverse of an exponential function. That is, b* = n
is equivalent to x = logy n. The following identity is very useful.

Theorem 7.82. Let a, b, and x be positive real numbers with a # 1 and b # 1. Then

logy, x

1 = .
%a® log; a

Example 7.83. Most calculators can compute Inn or log;,n, but are unable to compute
logarithms with any given base. But Theorem 7.82 allows you to do so. For instance, you
can compute log, 39 as log;, 39/ logg 2.

Notice that the formula in Theorem 7.82 can be rearranged as (log, a)(log, ) = log, x. This
form should make it evident that changing the base of a logarithm just changes the value by a
constant amount. This leads to the following result.

Corollary 7.84. Let a and b be positive real numbers with a # 1 and b # 1.
Then log, n = O(log,n).

Proof:  Follows from the definition of © and Theorem 7.82. O

Example 7.85. According to Corollary 7.84, logs n = O(loggn) and Inn = ©(logy n).

Corollary 7.84 is stating that all logarithms have the same rate of growth regardless of their
bases. That is, the base of a logarithm does not matter when it is used in asymptotic notation.
Because of this, the base is often omitted in asymptotic notation. In computer science, it is
usually safe to assume that the base of logarithms is 2 if it is not specified.

xExercise 7.86. Indicate whether each of the following is true (T) or false (F).

(a) 2" =06(3")

(b) 2" =0(3")

(¢) __3"=0(2")

(d) __logzn = ©O(logyn)

(e) ___logyn = O(loggn)

(f) ___logjpn = o(logzn)

Next we see that logarithms grow slower than positive powers of n.
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Theorem 7.87. Let b > 0 and ¢ > 0 be real numbers. Then log,.(n) = o(n®).

Example 7.88. According to Theorem 7.87, logyn = o(n?), log;yn = o(n'%), and Inn =

o(v/n).

xExercise 7.89. Prove Theorem 7.87. (Hint: This is easy if you use Theorems 7.50 and 7.65)

More generally, the next theorem states that any positive power of a logarithm grows slower
than any positive power of n. Since this one is a little tricky, we will provide the proof. In case
you have not seen this notation before, you should know that log® n means (logn)®, which is not
the same thing as log(n?).

Theorem 7.90. Let a > 0, b > 0, and ¢ > 0 be real numbers. Then log®(n) = o(n®). In
other words, any power of a log grows slower than any polynomial.

Proof:  First, we need to know that if a > 0 is a constant, and nh_)ngo f(n)=20C,
then "
Jim (F(n)” = (Jim, f(n))" = C".

Using this and the limit computed in the proof of Theorem 7.87, we have that

log? 1 “ 1 “
lim —e () = lim 08(n) =( lim 08(n) =0%=0.
n— oo nb n—00 nb/a n—00 nb/a

Thus, Theorem 7.50 tells us that log?(n) = o(n?). O

Example 7.91. According to Theorem 7.90, logs n = o(n?), n'® n = o(y/n), and logibooo,ooo =

0(n'00000001 ) .

Finally, any exponential function with base larger than 1 grows faster than any polynomial.
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Theorem 7.92. Let a > 0 and b > 1 be real numbers. Then n® = o(b™).

Example 7.93. According to Theorem 7.92, n% = 0(2"), n'5 = o(1.5%), n1:090.000 = 5(1.0000001™).

There are several ways to prove Theorem 7.92, including using repeated applications of
I’Hopital’s rule, using induction, or doing a little algebraic manipulation and using one of several
clever tricks. But the techniques are beyond what we generally need in the course, so we will omit
a proof (and, perhaps more importantly, we will not ask you to provide a proof!).

*Fill in the details 7.94. Fill in the following blanks with O, €2, O, or o. You should give
the most precise answer possible. (e.g. If you put O, but the correct answer is o, your answer
is correct but not precise enough.

(a) n(n—1)=____ (500n2).
(b) 50n2=____ (.001n*).

(c) logyn=____ (Inn).

(d) logy (n®) = ____(log3(n)).
(€) 2 t=___ (27

(f) 5" =____ (3")

(h) n®=___ (2")
(i) log!®n = (1.01™).
(,]) logIOO n = (nl.Ol)'

An alternative notation for little-o is <. In other words, f(n) = o(g(n)) iff f(n) < g(n).
This notation is useful in certain contexts, including the following comparison of the growth rate
of common functions. The previous theorems in this section provide proofs of some of these
relationships. The others are given without proof.
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Theorem 7.95. Here are some relationships between the growth rates of common functions:
c<logn < log?n < vn<n<nlgn<n't<n?<nd<nt< 2" <3< nl <«n®

You should convince yourself that each of the relationships given in the previous theorem are
correct. You should also memorize them or (preferable) understand why each one is correct so
you can ‘recreate’ the theorem.

+xExercise 7.96. Give a © bound for each of the following functions. You do not need to
prove them.

(a) f(n) =nd+n3+1900 +n" + 21n + n?

(b) f(n) = (n*+23n +19)(n? + 23n + n® + 19)n® (Don’t make this one harder than it is)

(¢) f(n)=mn2+ 10,000n + 100,000,000, 000

(d) f(n) =49%2" +34 3"

(e) f(n)=2"+n®+n?

(f) f(n) = nlogn + n?

(@) f(n) = log?%n 4 000001

(h) f(n) =nllogn +n"™+ 3"
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*Exercise 7.97. Rank the following functions in increasing rate of growth. Clearly indicated
if two or more functions have the same growth rate. Assume the logs are base 2.

z, x2, 2% 10000, log®Pz, 2% logx, zlo83, 000001 3 glog(z), log(z®00),
log(27)
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7.3 Algorithm Analysis

The overall goal of this chapter is to deal with a seemingly simple question: Given an algorithm,
how good is it? 1 say “seemingly” simple because unless we define what we mean by “good”, we
cannot answer the question. Do we mean how elegant it is? How easy it is to understand? How
easy it is to update if/when necessary? Whether or not it can be generalized?

Although all of these may be important questions, in algorithm analysis we are usually more
interested in the following two questions: How long does the algorithm take to run, and how
much space (memory) does the algorithm require. In fact, we follow the tradition of most books
and focus our discussion on the first question. This is usually reasonable since the amount of
memory used by most algorithms is not large enough to matter. There are times, however, when
analyzing the space required by an algorithm is important. For instance, when the data is really
large (e.g. the graph that represents friendships on Facebook) or when you are implementing a
space-time-tradeoff algorithm.

Although we have simplified the question, we still need to be more specific. What do we mean
by “time”? Do we mean how long it takes in real time (often called wall-clock time)? Or the
actual amount of time our processor used (called CPU time)? Or the exact number of instructions
(or number of operations) executed?

*Question 7.98. Why aren’t wall-clock time and CPU time the same?

Answer

Because the running time of an algorithm is greatly affected by the characteristics of the
computer system (e.g. processor speed, number of processors, amount of memory, file-system
type, etc.), the running time does not necessarily provide a comparable measure, regardless of
whether you use CPU time or wall-clock time. The next question asks you to think about why.

*Question 7.99. Sue and Stu were competing to write the fastest algorithm to solve a
problem. After a week, Sue informs Stu that her program took 1 hour to run. Stu declared
himself victorious since his program took only 3 minutes. But the real question is this:
Who's algorithm was more efficient? Can we be certain Stu’s algorithm was better than
Sue’s? Explain. (Hint: Make sure you don’t jump to any conclusion too quickly. Think
about all of the possibilities.)

Answer

The answer to the previous question should make it clear that you cannot compare the running
times of algorithms if they were run on different machines. Even if two algorithms are run on the
same computer, the wall-clock times may not be comparable.
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*Question 7.100. Why isn’t the wall-clock time of two algorithms that are run on the same
computer always a reliable indicator of their relative performances?

Answer

In fact, if you run the same algorithm on the same machine multiple times, it will not always
take the same amount of time. Sometimes the differences between trial runs can be significant.

*Question 7.101. If two algorithms are run on the same machine, can we reliably compare
the CPU-times?

Answer

So the CPU-time turns out to be a pretty good measure of algorithm performance. Unfor-
tunately, it does not really allow one to compare two algorithms. It only allows us to compare
specific implementations of the algorithms. It also requires us to implement the algorithm in an
actual programming language before we even know how good the algorithm is (that is, before we
know if we should even spend the time to implement it).

But we can analyze and compare algorithms before they are implemented if we use the number
of instructions as our measure of performance. There is still a problem with this measure. What
is meant by an “instruction”? When you write a program in a language such as Java or C++,
it is not executed exactly as you wrote it. It is compiled into some sort of machine language.
The process of compiling does not generally involve a one-to-one mapping of instructions, so
counting Java instructions versus C++ instructions wouldn’t necessarily be fair. On the other
hand, we certainly do not want to look at the machine code in order to count instructions—
machine code is ugly. Further, when analyzing an algorithm, should we even take into account
the exact implementation in a particular language, or should we analyze the algorithm apart from
implementation?

0O.K., that’s enough of the complications. Let’s get to the bottom line. When analyzing
algorithms, we generally want to ignore what sort of machine it will run on and what language
it will be implemented in. We also generally do not want to know ezactly how many instructions
it will take. Instead, we want to know the rate of growth of the number of instructions. This is
sometimes called the asymptotic running time of an algorithm. In other words, as the size of the
input increases, how does that affect the number of instructions executed? We will typically use
the notation from earlier in this chapter to specify the running time of an algorithm. We will call
this the time complexity (or often just complexity) of the algorithm.

Given an algorithm, the size of the input is exactly what it sounds like—the amount of space
required to specify the input. For instance, if an algorithm operates on an array of size n, we
generally say the input is of size n. For a graph, it is usually the number of vertices or the number
of vertices and edges. When the input is a single number, things get more complicated for reasons
I do not want to get into right now. We usually don’t need to worry about this, though.
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Algorithm analysis involves determining the size of the input, n, and then finding a function
based on n that tells us how long the algorithm will take if the input is of size n. By “how long”
we of course mean how many operations.

Example 7.102 (Sequential Search). Given an array of n elements, often one needs to
determine if a given number val is in the array. One way to do this is with the sequential
search algorithm that simply looks through all of the elements in the array until it finds it or
reaches the end. The most common version of this algorithm returns the index of the element,
or —1 if the element is not in the array. Here is one implementation.

int sequentialSearch(int al[],int n, int val) {
for(int i=0;i<a.size();i++) {
if(alil==val) {
return i;
}
}
return -1;

}
What is the size of the input to this algorithm?

Solution: There are a few possible answers to this question. The input tech-
nically consists of an array of n elements, the numbers n, and the value we are
searching for. So we could consider the size of the input to be n + 2. However,
typically we ignore constants with input sizes. So we will say the size of the input
is n.

In general, if an algorithm takes as input an array of size n and some constant number of
other numeric parameters, we will consider the size of the input to be n.

xExercise 7.103. Consider an algorithm that takes as input an n by m matrix, an integer
v, and a real number . What is the size of the input?

Answer

Example 7.104. How many operations does sequentialSearch take on an array of size n?

Solution: As mentioned above, we consider n as the size of the input. Assigning
1 = 0 takes one instruction. Each iteration through the for loop increments i,
compares i with a. size(), and compares a[i] with val. Don’t forget that accessing
afi] and calling a.size() each take (at least) one instruction. Finally, it takes
an instruction to return the value. If the wal is in the array at position k, the
algorithm will take 2 + 5k = O(k) operations, the 2 coming from the assignment
i=0 and the return statement. If val is not in the array, the algorithm takes
2 + 5n = O(n) instructions.

This last example should bring up a few questions. Did we miss any instructions? Did we
miss any possible outcomes that would give us a different answer? How exactly should we specify
our analysis?

Let’s deal with the possible outcomes question first. Generally speaking, when we analyze an
algorithm we want to know what happens in one of three cases: The best case, the average case,
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or the worst case. When thinking about these cases, we always consider them for a given value
of n (the input size). We will see in a moment why this matters.

As the name suggests, when performing a best case analysis, we are trying to determine the
smallest possible number of instructions an algorithm will take. Typically, this is the least useful
type of analysis. If you have experienced a situation when someone said something like “it will
only take an hour (or a day) to fix your cell phone,” and it actually took 3 hours (or days), you
will understand why.

When determining the best-case performance of an algorithm, remember that we need to
determine the best-case performance for a given input size n. This is important since otherwise
every algorithm would take a constant amount of time in the best case simply by giving it an
input of the smallest possible size (probably 0 or 1). That sort of analysis is not very informative.
So when you are asked to do a best-case analysis of an algorithm remember that it is implied
that what is being asked is the best-case analysis for an input of size n. This actually applies
to average and worst-case analysis as well, but it is easier to make this mistake when doing a
best-case analysis.

Worst case analysis considers what is the largest number of instructions that will execute
(again, for a given input size n). This is probably the most common analysis, and typically the
most useful. When you pay Amazon for guaranteed 2-day delivery, you are paying for them to
guarantee a worst-case delivery time. However, this analogy is imperfect. When you do a worst-
case analysis, you know the algorithm will never take longer than what your analysis specified,
but occasionally an Amazon delivery is lost or delayed. When you perform a worst-case analysis
of am algorithm, you always consider what can happen that will make an algorithm take as long
as possible.

The Awverage case is a little more complicated, both to define and to compute. The first
problem is determining what “average” means for a particular input and/or algorithm. For
instance, what does an “average” array of values look like? The second problem is that even
with a good definition, computing the average case complexity is usually much more difficult than
the other two. It also must be used appropriately. If you know what the average number of
instructions for an algorithm is, you need to remember that sometimes it might take less time
and sometimes it might take more time—possibly significantly more time.

Example 7.105. Continuing the sequentialSearch example, notice that our analysis above
reveals that the best-case performance is 7 = ©(1) operations (if the element sought is the
first one in the array) and the worst-case performance is 2 + 5n = ©(n) operations (if the
element is not in the array). If we assume that the element we are searching for is equally
likely to be anywhere in the array or not in the array, then the average-case performance
should be about 2 + 5(n/2) = ©(n) operations. We will do a more thorough average-case
analysis of this algorithm shortly.

Notice that in the previous example, the average and worst case complexities are the same.
This makes sense. We estimate that the average case takes about half as long as the worst case.
But no matter how large n gets, it is still just half as long. That is, the rate of growth of the
average and worst-case running times are the same. Also note the logic we used to obtain the
best-case complexity of ©(1). We did not say the best case was ©(1) because the best-case input
was an array of size one. Instead it is ©(1) because in the best case the element we are searching
for is the first element of the array, no matter how large the array is.

Here is another important question: How do we know we counted all of the operations? As
it turns out, we don’t actually care. This is good because determining the exact number is very
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difficult, if not impossible. Recall that we said we wanted to know the rate of growth of an
algorithm, not the exact number of instructions. As long as we count all of the “important” ones,
we will get the correct rate of growth. But what are the “important” ones? The term abstract
operation is sometimes used to describe the operations that we will count. Typically you choose
one type of operation or a set of operations that you know will be performed the most often and

consider those as the abstract operation(s).

Example 7.106. The analysis of sequentialSearch can be done more easily than in the
previous example. We repeat the algorithm here for convenience.

int sequentialSearch(int al[],int n, int val) {
for(int i=0;i<a.size();i++) {
if(alil==val) {
return i;
}
}
return -1;
}
Notice that the comparison (a[i]l==val) is executed as often as any other instruction. There-
fore if we count the number of times that instruction executes, we can use that to determine
the rate of growth of the running time.

In the best case the comparison is executed once (if the element being searched for is the
first one in the array), so the best-case complexity is O(1).

In the worst case the comparison is executed n = ©(n) times (if the element being searched
for is either at the end or not present in the array).

As before, we expect the average case to be about n/2 = ©(n). But let’s do a more precise
average case analysis to be sure.

If we assume that the element is equally likely to be anywhere in the array, then there is a
1/n chance that it will be in any given spot. If it is in the first spot, the comparison executes
once. If it is in the second spot, it executes twice. In general it takes k comparisons if it is in
the kth spot. Since each possibility has a 1/n chance, the average expected search time is

S h_lyy loletD) _ntl_gq,
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Our analysis simplified things a bit—we didn’t take into account the possibility that the
element was not in the array. To do so, let’s assume the element searched for is equally likely
to be anywhere in the array or not in the array. That is, there is now a 1/(n+ 1) chance that
it will be in any of the n spots in the array and a 1/(n + 1) chance that it is not in the array.
(We divide by n + 1 because there are now n + 1 possibilities, each equally likely.) If it is not
in the array, the number of comparisons is n. In this case the expected time would be

- k n 1 - 1 n(n+1) n? 4+ 3n
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We'll leave it to you to prove that ggf’l”) = ©O(n). (Use Theorem 7.50 and a little algebra).

Notice that we obtained the same answers here as we did above when we tried to take
into account every operation.



238 Chapter 7

The previous example demonstrates how performing an average-case analysis is typically much
more difficult than the other two, even with a relatively simple algorithm. In fact, did we even do
it correctly? Is it a valid assumption that there is a 1/(n + 1) chance that the element searched
for is not in the array? If we are searching for a lot of values in a small array, perhaps it is the
case that most of the values we are searching for are not in the array. Maybe it is more realistic
to assume there is a 50% chance it is in the array and 50% chance that it is not in the array. I
could propose several other reasonable assumptions, too. As stated before, it can be difficult to
define “average.” In this case it actually doesn’t matter a whole lot because under any reasonable
assumptions the average-case analysis will always come out as O(n).

As you might be able to imagine, things get much more complicated as the algorithms get
more complex. This is one of the reasons that in some cases we will skip or gloss over the details
of the average-case analysis of an algorithm.

It is important to make sure that you choose the operation(s) you will count carefully so your
analysis is correct. In addition, you need to look at every instruction in the algorithm to determine
whether or not it can be accomplished in constant time. If some step takes longer than constant
time, that needs to be properly taken into consideration. In particular, consider function/method
calls and operations on data structures very carefully. For instance, if you see a method call like
insert(x) or get(x), you cannot just assume they take constant time. You need to determine
how much time they actually take.

Note: When you are asked for the complexity of an algorithm, you should do the following
three things:

1. Give the best, average, and worst-case complexities unless otherwise specified. Some-
times the average case is quite complicated and can be skipped.

2. Give answers in the form of ©(f(n)) for some function f(n), or O(f(n)) if a tight
bound is not possible. The function f(n) you choose should be as simple as possible.
For instance, instead of ©(3n?+2n+89), you should use ©(n?) since the constants and
lower order terms don’t matter.

3. Clearly justify your answers by explaining how you arrived at them in sufficient detail.

Example 7.107. What is the complexity of max(x,y)? Justify your answers.

int max(int x, int y) A
if(x >= y) {
return Xx;
} else {
return y;
}
}

Solution: = No matter what, the algorithm does a single comparison followed
by a return statement. Therefore, in the best, average, and worst case, max takes
about 2 operations. Therefore, the complexity is always O(1) (otherwise known
as constant).
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and average-case complexities.

int maximum(int al[],int n) {
int max = int.MIN_VAL;
for (int i=0; i<mn; i++)
max = max(max, alil);
return max;

xExercise 7.108. Analyze the following algorithm that finds the maximum value in an array.
Start by deciding which operation(s) should be counted. Don’t forget to give the best, worst,

When an algorithm has no conditional statements (like the maximum algorithm from the pre-
vious exercise), or at least none that can cause the algorithm to end earlier, the best, average,
and worst-case complexities will usually be the same. I say usually because there is always the

possibility of a weird algorithm that I haven’t thought of that could be an exception.

Example 7.109. Give the complexity of the following code.

int q=0;

for (int i=1; i<=n; i++) {
q=q+ix*i;

}

for (int j=1; j<=n; j++) {
q=q*j;

}

Solution: This algorithm has two independent loops, each of which do slightly

different things. Thus, we cannot pick a single operation to count. Instead we will
pick the assignment statements that involve q. That is, we will use both q=q+ix*i
and gq=qg*j. The first assignment executes n times since the first loop executes for
every value of ¢ from 1 to n. The second loop also executes its assignment n times
for the same reason. Since the loops happen one after another, we add the number
of operations, so the total is n + n = 2n assignment statements. Since there are
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no conditional statements, this is the best, worst, and average-case number of
assignment statements. Thus, the complexity for all three cases is ©(n).

Example 7.110. Give the complexity of the following code.

double V = 0;
for (int i=1; i<=n; i++) {
for (int j=1; j<=n; j++) {
V=V+A[i]l*A[j];
}
}

Solution:  Clearly the assignment (V=A[i]*A[j]) occurs the most often. The
inner loop® always executes n times, each time doing one assignment. The outer
loop executes n times, and each time it executes, it executes the inner loop.
Therefore the total time is n-n = ©(n?). This is the best, worst, and average case
complexity since nothing about the input can change what the algorithm does.

Here is another way to think about it. The inner loop executes the assignment
statement n times every time it executes. The first time through the outer loop,
the whole inner loop executes an calls the assignment n times. The second time
through the outer loop, the whole inner loop executes an calls the assignment n
times. This happens all the way until the nth time through the outer loop during
which the whole inner loop executes an calls the assignment n times. Thus, the
total number of times the assignment is called is n4+n+---+n times (where there
are n terms in the sum), which is just n - n. Thus the complexity is ©(n?).

?Always analyze from the inside out. The more practice you get, the more it will be obvious that this is
the only way that will consistently work.

Sometimes people mistakingly think the algorithm Example 7.109 takes ©(n?) operations.
But it is not executing one loop inside another loop. It is executing one loop n times followed by
another loop n times. On the other hand, the algorithm in Example 7.110 does not take n + n
operations. It is not executing one loop n times followed by another loop n times. It is executing
one loop n times, and each of those n times it is executing another loop that takes n time.

Here is an analogy. If you climb a flight of 10 stairs followed by another flight of 10 stairs,
you climbed a total of 10 + 10 = 20 stairs. Now assume you go into a building that has 10 floors.
There are 10 steps between floors (so it takes 10 steps to get from floor 1 to 2, etc.) If you climb
to the top of the building, how many stairs did you climb? It is 10 + 10 + - - - + 10 (where there
are 10 terms in the sum), which is 100 = 10?. How does this relate to the previous examples?
Simple. In the first case, you executed:

for(stair 1 through 10)
climb stair

for(stair 1 through 10)
climb stair

and in the second case you executed:
for(floors 1 through 10)

for(stair 1 through 10)
climb stair
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Do you see the resemblance to the code from Examples 7.109 and 7.1107 And do you see how we
are really performing the same analysis?

It is important to be careful not to jump to conclusions when analyzing algorithms. For
instance, a double-nested for-loop should always take ©(n?) to execute, right?

xExercise 7.111. What is the worst-case complexity of the following algorithm?

int k=50;
for (i = 0; i < n; i ++) {
for (j = 0; j < k; j ++) A
alil[j] = bl[il[j] * x;
}

If you read the solution to the previous exercise (which you definitely should have—always
read the solutions!), you will see that you need to be careful not to jump to conclusions too
quickly. A double-nested loop does not always mean an algorithm takes ©(n?) time. But does it
guarantee it will take O(n?) (in other words, no more than quadratic time)?

*Exercise 7.112. What is the worst-case complexity of the following algorithm?

for (i = 0; i < n; i ++) {
for (j = 0; j < m*n; j ++) {
alil[j] = b[il[j] * x;
}

Let’s look at a slightly more complicated example.
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Example 7.113. Find the complexity of bubblesort, where n is the size of the array a.

void bubblesort(int al],int n) {
for(int i=n-1;i>0;i--) {
for(int j=0;j<i;j++) {
if(aljl > alj+11) {
swap(a,j,j+1);
}

}

Solution:  First, notice that the input size is n since we are sorting an array
with n elements.

Example 3.46 gives an implementation of swap that takes constant time (verify
this!). The conditional statement, including the swap, takes constant time (we’ll
call it ¢, as usual), regardless of whether or not the condition is true. It takes
longer if the condition is true, but it is constant either way—about 3 operations
(array indexing (x2) and comparison) versus about 6 (the swap adds about 3).

The inner loop goes from j = 0 to j = i — 1, so it executes i times and takes ci
time. But what is ¢? This is where things get a little more complicated than in
the previous examples. Notice that the outer loop is changing the value of .. We
need to look at this a little more carefully.

1. The first time through the outer loop ¢ = n — 1. So the inner loop takes
c(n — 1) time.

2. The second time through the outer loop i = n — 2. So the inner loop takes
c(n — 2) time.

3. The kth time through the outer loop i = n — k. So the inner loop takes
c(n — k) time.

4. This goes all the way to the nth time through the outer loop when ¢ = 1 and
the inner loop takes c- 1 time.

The outer loop is simply causing the inner loop to be executed over and over
again, but with different parameters (specifically, it is changing the limit on the
inner loop). Thus, we need to add up the time taken for all of these calls to the
inner loop. Doing so, we see that the total time required for bubblesort is

(n—1)4+ (n—2)+ (n—3)+---+1)
(1+2+3+-+(n—1)

n—1

cn—=1)+c(n—-2)+cn-3)+---+cl = ¢

= C

Il
o
=l

Thus, the complexity (worst, best, and average) of bubblesort is ©(n?).
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Note: Part way through our analysis of bubblesort we had k as part of our complexity.
But notice that the k did not show up as part of the final complexity. This is because in the
context of the entire algorithm, k has no meaning. It is a local variable in an algorithm that
we needed to use to determine the overall complexity of the algorithm. The only variables
that should appear in the complexity of an algorithm are those that are related
to the size of the input.

*Question 7.114. In the best case, the code in the conditional statement in bubblesort
never executes. Why does this still result in a complexity of ©(n?)?

Answer

In reality, the best and worst case performance of bubblesort are different—the worst case
is about twice as many operations. But when we are discussing the complexity of algorithms, we
care about the asymptotic behavior—that is, what happens as n gets larger. In that case, the
difference is still just a factor of 2. The best and worst-case complexities have the same growth
rate (quadratic).

Consider how this is different if the best-case complexity of an algorithm is ©(n) and the
worst-case complexity is ©(n?). As n gets larger, the gap between the performance in the best
and worst cases also gets larger. In this case, the best and worst-case complexities are not the
same since one is linear and the other is quadratic.

Note: If an algorithm contains nested loops and the limit on one or more of the inner loops
depends on a variable from an outer loop, analyzing the algorithm will generally involve one
or more summations, as it did with the previous example. As mentioned previously, variables
related to those loops that are used in your analysis (e.g. i, j, k, etc.) should never show up
i your final answer! They have no meaning in that context.

Example 7.115. Find the complexity of insertionSort, where n is the size of the array a.

void imnsertionSort(int al[l, int n) {
for (int i=1;i<n;i++) {

int v=alil;

int j=ij;

while (j > 0 && alj]l > v) {
alj+1] = aljl;
j==s

}

aljl=v;

}

Solution:  The code inside the while loop takes constant time. The loop can
end for one of two reasons—if j gets to 0, or if a[j]1>v. In the worst case, it goes
until j = 0. Since j starts out being ¢ at the beginning, and it is decremented in
the loop, that means the loop executes i times in the worst case.
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The for loop (the outer loop) changes the value of i from 0 to n — 1, executing a
constant amount of code plus the while loop each time. So the ith time through
the outer loop takes ¢; 4 coi operations. We will simplify this to just ¢ operations—
you can think of it as counting the number of assignments in the while loop if you
wish. So the worst-case complexity is

"_1,_ (n—1n
1Z—T—@(nQ).

1=
This happens, by the way, if the elements in the array begin in reverse order.

In the best case, the loop only executes once each time because a[j]>v is always
true, which happens if the array is already sorted. In this case, the complexity is
©(n) since the outer loop executes n—1 times, each time doing a constant amount
of work.

We should point out that if we had done our computations using ¢; + coi instead of i we

would have arrived at the same answer, but it would have been more work:

n—1 n—1 n—1 n—1 (n o 1)n
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The advantage of including the constants is that we can stop short of the final step and get a

b

etter estimate of the actual number of operations used by the algorithm. In other words, if

we want an exact answer, we need to include the constants and lower order terms. If we just
want a bound, the constants and lower order terms can often be ignored.

Note: There are rare cases when ignoring constants and lower order terms can cause trouble
(meaning that it can lead to an incorrect answer) for subtle reasons that are beyond the scope
of this book. Unless you take more advanced courses dealing with these topics, you most likely
won’t run into those problems.

Here are a few principles to take away from the examples we have seen so far.

1. We can usually replace constants with 1. For instance, if something performs 30 operations,

we can say it is constant and call it 1. This is only valid if it really is always 30, of course.

2. We can usually ignore lower-order terms. So if an algorithm takes cin + ¢y operations, we

can usually say that it takes n.

3. Nested loops must be treated with caution. If the limits in an inner loop change based on

the outer loop, we generally need to write this as a summation.

4. We should generally work from the inside-out. Until you know how much time it takes to

execute the code inside a loop, you cannot determine how much time the loop takes.

5. Function calls must be examined carefully. We cannot assume that a function takes a

constant amount of time unless we know that to be true. In fact, the next exercise has a
function call that does not take constant time.



Algorithm Analysis 245

6. Only the size of the input should appear as a variable in the complexity of an algorithm. If
you have variables like i, j, or k in your complexity (because they were indexes of a loop,
for instance), you should probably rethink your analysis of the algorithm. Loop variables
should never appear in the complexity of an algorithm.

Now it’s time to see if you can spot where someone didn’t follow some of these principles.

xEvaluate 7.116. Consider the following code that computes a® + a' + a% + --- +a" L.

double addPowers(double a, int n) {
if (a==1) {
return n+1;
} else {
double sum = 0;
for(int i=0;i<n;i++) {
sum += power(a,i);
+
return sum;
}
}
The function power(a,i) computes a’, and takes i operations. Regard the input size as n.
What is the worst-case complexity of addPowers(a,n)?

Solution |1 Since a" is an exponential function, the complexity is O(a™.

Evaluation

Solution 2 The worst-case is Ni since power(a,i) takes i time and the for
loop executes n times.

Evaluation

Solution 3: The for loop executes N times. Each time it executes, it calls
power (a,i), which takes i time. In the worst case, i =N —|[, so the complexity
is (n — DN = O(nND.

Evaluation
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xExercise 7.117. What is the worst-case complexity of addPowers from Evaluate 7.1167
Justify your answer.

xExercise 7.118. Give an implementation of the addPowers algorithm that takes ©(n) time.
Justify the fact that it takes ©(n) time. (Hint: Why compute a® (for instance) from scratch
if you have already computed a*?)

double addPowers(double a, int n) {

}
Justification of complexity:
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xExercise 7.119. Give an implementation of the addPowers algorithm that takes ©(n) time
but does not use a loop. Justify the fact that it takes ©(n) time. (Hint: This solution should
be much shorter than your previous one.)

double addPowers(double a, int n) {

}
Justification of complexity:

Example 7.120. A student turned in the code below (which does as its name suggests). I
gave them a ‘C’ on the assignment because although it works, it is very inefficient. About
how many operations does their implementation require?

int sumFromMToN(int m, int n) {
int sum = 0;
for(int i=1;i<=n;i++) {
sum = sum + 1i;
}
for(int i=1;i<m;i++) {
sum = sum - i;
}

return sum;

}

Solution:  The first loop takes about 1 + 4n operations, and the second loop
takes about 1 + 4(m — 1) operations. The first statement and return statement
add 2 operations. So the total number of operations is about 4 +4n+4(m —1) =
4(n+m) =0O0(n+ m).
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*xEvaluate 7.121. Write an ‘A’ version of the method from Example 7.120. You can assume
that 1 < m < n. For each solution, determine how many operations are required and evaluate
it based on that as well as whether or not it is correct.
Solution I:
int sumFromMToN(int m,int n) {
int sum = 0;
for(int i=0;i<mn;i++) {
sum = sum + 1i;
}
for(int i=0;i<m;i++) {
sum = sum - i;
}
return sum;
}
Evaluation
Solution 2
int sumFromMToN(int m,int n) {
int sum = O0;
for(int i=m;i<n;i++) {
sum = sum + i;
}
return sum;
}
Evaluation
Solution 3:
int sumFromMToN(int m,int n) {
return (n*(n-1)/2 - m(m-1)/2);
}
Evaluation
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xExercise 7.122. Write an ‘A’ version of the method from Example 7.120. You can assume
that 1 < m < n. Explain why your solution is correct and give its efficiency.

int sumFromMToN(int m,int n) {

}
Justification

Efficiency with justification

Example 7.123. The MatrixMultiply algorithm given below is the standard algorithm used
to compute the product of two matrices. Find the worst-case complexity of MatrixMultiply.
Assume that A and B are n X n matrices.

Matrix MatrixMultiply(Matrix A, Matrix B) {

Matrix C;
for(int i=0 ; i < n; i++) {
for(int j=0 ; j < n ; j++) {
Cl[il[j1=0;

for(int k=0 ; k < n ; k++) {
C[il[j1 += A[i]l([k1=*B[k1[j]1;
}
}
}

return C;

Solution:  The code inside the inner loop does array indexing, multiplication,
addition, and assignment. All of these together take just constant time. There-
fore, let’s count the number of times the statement C[i] [j1+=A[i] [k]*B[k] [j]
executes. We will ignore the calls to C[i] [j]=0 since it executes just once every
time the entire middle loop executes, so it has a negligible contribution. Sim-
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ilarly, the statement C[i] [j1+=A[i] [k]*B[k] [j] is called at least as often as
any of the code in the for loops (i.e. the comparisons and increments) so we
will ignore that code as well. The bottom line is that if we count the number of
times C[1] [j1+=A[4i] [k]1*B[k] [j] executes, it will give us a tight bound on the
complexity of MatrixMultiply.

The inner loop executes the statement n times. The middle loop executes n
times, each time executing the inner loop (which executes the statement n times).
Thus, the middle loop executes the statement n x n = n? times. The outer loop
simply executes the middle loop n times. Therefore the outer loop (and thus the
whole algorithm) executes the statement n x n? = n3 times. Thus, the worst-case
complexity of MatrixMultiply is ©(n?®). Notice that this is also the best and
average-case complexity since there are no conditional statements in this code.

Next we want to analyze the binary search algorithm. Before we do so we present a few useful
results. It will eventually become clear how these results relate to the analysis of binary search.
Let’s start with an observation.

Example 7.124. How is the binary representation of a number n related to the binary
representation of |n/2]|? Let’s try some examples. If n = 9, [n/2] = 4. Notice that the
binary representation of 9 is 1001 and the binary representation of 4 is 100. If n = 22,
|n/2] = 11. The binary representation of 22 is 10110 and the binary representation of 11 is
1011. Is there a pattern here? This probably isn’t enough data to be certain yet.

xExercise 7.125. Fill in the following table with the binary representations.

n [n/2]
decimal binary decimal binary
12 6
13 6
32 16
33 16
118 59
119 59

Do you notice a pattern that relates the binary representation of n and [n/2]?

Answer

Theorem 7.126. The binary representation of |n/2| is the binary representation of n shifted
to the right one bit. That is, the binary representation of |n/2| is the same as that of n with
the last bit (the lowest order bit) chopped off.
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Proof: Let the binary representation of n be apam—_1am—29...a2a1a9, where
am =1 (so the highest order bit is a 1). Then

n=am2™ 4+ am12™ 1+ .. . +a22? +a;2' + a9 2°.
From this we can see that

/2] = [(am2™ +am-12™" 4+ ... +a22*+ a1 2! +a02°)/2]

= |am2™/2+ am12™ /24 .. a9 22/2 4+ a1 21 /2 4+ ag 2°/2]
1am 2™+ a1 2772 L ag 2t + a4y 20+ ag/2]
= 42" e am_12" 2 a2t a1 20

Notice that in the last step, ag/2 is chopped off by the floor since it is either 0/2
or 1/2 and the other numbers are integers. From this we can see that the binary
representation of |n/2] is GmQm—1am—2 . . . azay, which is the binary representation
of n shifted to the right one bit. O

Corollary 7.127. If the number n requires exactly k bits to represent in binary, then |n/2|
requires exactly k — 1 bits to represent in binary.

Proof:  According to Theorem 7.126, the binary representation of |[n/2| is the
binary representation of n shifted to the right one bit. Thus it is clear that |n/2|
requires one less bit to represent. ]

We need just one more result.

Theorem 7.128. It takes |logyn| + 1 bits to represent n in binary.

Proof:  Recall that log, b is defined as “the number that ¢ must be raised to in
order to get b.” That is, if k = log,b, then c* = b. Also, it should be clear that
2F s the smallest number that requires k + 1 bits to represent in binary. (If you
are not convinced of this, write out some binary numbers near powers of two until
you see it.) Let k be the number such that

k=1l < p < 2k, (7.4)

Since writing 2871 takes k bits and 2F is the smallest number that requires k + 1
bits, it should be clear that n requires exactly k bits to represent in binary. Taking
the logarithm of 7.4, we get

logy 2871 < logy n < log, 2,

which leads to
k—1<logyn < k.

Clearly |logan| = k — 1 since it is an integer. Thus, k = |logan| + 1, so it takes
llogy n| + 1 bits to represent n in binary. O

Now we are ready to analyze binary search.
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Example 7.129. You are probably already familiar with the binary search algorithm. It is
given here for reference.

int binarySearch(int all, int n, int val) {
int left=0, right=n-1;
while (right-left>=0) {
int middle = (left+right)/2;
if (val==al[middle])
return middle;
else if(val<al[middlel])
right=middle-1;
else
left=middle+1;
}
return -1;
}
Recall that it searches a sorted array by comparing the value being searched for with the
middle element of the array. If they are the same, it returns the index of the element.
Otherwise it continues the search in only half of the array. In other words, it removes from
consideration half of the array. Which half depends on whether the search value was greater
than or less than the middle value.
We will show that binary search has worst-case complexity ©(logn). More precisely, we
will prove that the while loop executes no more than |logyn| + 1 times.

Proof:  Since the code inside the while loop takes a constant amount of time,
the complexity of binary search depends only on the number of iterations of the
loop. Clearly the worst case is when a value is not in the array since otherwise
the loop ends early with the return statement. Thus we will assume the value is
not in the array.

Notice that the value right-1left is the number of entries of the array that are still
under consideration by the algorithm. The loop executes until right-left < 0.
Before the first iteration, right-left = n. During each iteration, either right
or left is set to the middle value between right and left (plus or minus 1). So
after the first iteration, right-left < |n/2|. In other words, the algorithm has
discarded at least half of the entries of the array. During each subsequent iteration,
right-left continues to be no more than the floor of half of its previous value,
so the algorithm continues to discard half of the entries of the array each time
through the loop.

According to Corollary 7.127, each iteration of the loop reduces the number of
bits used to represent right-left by one. According to Theorem 7.128, it takes
|logy n| + 1 bits to represent n in binary, and right —le ft started out as n. There-
fore, after |log,n| iterations through the loop, right-left becomes 1, and the
next iterations ensures that right-left becomes negative and the loop terminates
(check this!). Since the loop executes at most |logyn| 4+ 1 times, the worst-case
complexity of binary search is ©(logn). g

We end this section with a comment that perhaps too few people think about. Theory and
practice don’t always agree. Since asymptotic notation ignores the constants, two algorithms that
have the same complexity are not always equally good in practice. For instance, if one takes 4-n?
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operations and the other 10,000 - n? operations, clearly the first will be preferred even though
they are both ©(n?) algorithms.

As another example, consider matrix multiplication, which is used extensively in many scien-
tific applications. The standard algorithm to multiply matrices has complexity ©(n3). Strassen’s
algorithm for matrix multiplication (the details of which are beyond the scope of this book) has
complexity of about ©(n?8). Clearly, Strassen’s algorithm is better asymptotically. In other
words, if your matrices are large enough, Strassen’s algorithm is certainly the better choice. How-
ever, it turns out that if n = 50, the standard algorithm performs better. There is debate about
the “crossover point.” This is the point at which the more efficient algorithm is worth using.
For smaller inputs, the overhead associated with the cleverness of the algorithm isn’t worth the
extra time it takes. For larger inputs, the extra overhead is far outweighed by the benefits of the
algorithm. For Strassen’s algorithm, this point may be somewhere between 75 and 100, but don’t
quote me on that. The point is that for small enough matrices, the standard algorithm should
be used. For matrices that are large enough, Strassen’s algorithm should be used. Neither one is
always better to use.

Analyzing recursive algorithms can be a little more complex. We will consider such algorithms
in Chapter 8, where we develop the necessary tools.

7.3.1 Common Time Complexities

We have already discussed the relative growth rates of functions. In this section we apply that
understanding to the analysis of algorithms. That is, we will discuss common time complexities
that are encountered when analyzing algorithms. Let n be the size of the input and k£ a constant.
We will briefly discuss each of the following complexity classes, which are listed (mostly) in order
of rate of growth.

e Constant: ©(k), for example O(1)

Logarithmic: O(log; n)

Linear: ©(n)

nlogn: O(nlog,n)
Quadratic: ©(n?)

Polynomial: ©(n¥)

Exponential: ©(k™)

Definition 7.130 (Constant). An algorithm with running time ©(1) (or O(k) for some
constant k) is said to have constant complezity. Note that this does not necessarily mean
that the algorithm takes exactly the same amount of time for all inputs, but it does mean
that there is some number K such that it always takes no more than K operations.
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Example 7.131. The following algorithms have constant complexity.

int FifthElement(int A[],int n) int PartialSum(int A[],int n) {
{ int sum=0;

return A[4]; for(int i=0;i<42;i++)
T sum=sum+A[i];

return sum;

}
The algorithm FifthElement just indexes into an array and returns that value. Since array

indexing takes constant time, as does returning a single value, this algorithm clearly takes
just constant time, no matter how large n is.

The algorithm PartialSum might seem to take O(n) time since it contains a loop. But
don’t jump to conclusions too quickly. Notice that the loop executes 42 times, regardless of
how large n might be. All of the other operations (both in and out of the loop) takes constant
time. Thus, the overall complexity is something like ¢y + 42 % co, where ¢, is the time it takes
to do the operations outside the loop, and ¢y is the time it takes to execute the code in the
loop each time it executes, including the comparison and increment in the for loop itself.
Since both ¢; and ¢y are constant, so is ¢; + 42 * co. Thus, the algorithm takes constant time.

*Exercise 7.132. Which of the following algorithms have constant complexity? Briefly
justify your answers.

(a) The AreaTrapezoid algorithm from Example 3.1.

Answer

(b) The factorial algorithm from Example 3.40.

Answer

(¢) The absoluteValue algorithm from Problem 3.12.

Answer

Definition 7.133 (Logarithmic). Algorithms with running time ©(logn) are said to have
logarithmic complexity. As the input size n increases, so does the running time, but very
slowly. Logarithmic algorithms are typically found when the algorithm can systematically
ignore fractions of the input.
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Example 7.134. In Example 7.129 we saw that binary search has complexity O (logn).

Definition 7.135 (Linear). Algorithms with running time ©(n) are said to have linear
complexity. As n increases, the run time increases in proportion with n. Linear algorithms
access each of their n inputs at most some constant number of times.

Example 7.136. The following are linear algorithms.

void mSumFirstN(int n) {
int sum=0;
for(int i=1;i<=n;i++)
for (int i=1;i<=n;i++ . ’ ’
( ’ 7 ) for(int k=1;k<7;k++)
sum = sum + 1; .
} sum = sum + 1i;

}
It is pretty easy to see that sumFirstN takes linear time since it contains a single for loop

that executes n times and does a constant amount of work each time.
At first glance it may seem that mSumFirstN takes ©(n?) time since it has a double nested
loop. You will think about why it is actually ©(n) in the next question.

void sumFirstN(int n) {
int sum=0;

*Question 7.137. Why is the complexity of mSumFirstN from the previous example O(n)
and not ©(n?)?

Answer

Definition 7.138 (nlogn). Many divide-and-conquer algorithms have complexity ©(nlogn).
These algorithms break the input into a constant number of subproblems of the same type,
solve them independently, and then combine the solutions together. Not all divide-and-
conquer algorithms have this complexity, however.

Example 7.139. Two of the most well known sorting algorithms, Quicksort and Merge-

sort, have an average case complexity of ©(nlogn). We will do a complete analysis of both
algorithms in Chapter 8.

Definition 7.140 (Quadratic). Algorithms with running time ©(n?) are said to have quadratif
complexity. As n doubles, the running time quadruples.
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Example 7.141. The following algorithm is quadratic.

int compute_sums(int A[], int n) {
int M[n] [n];
for (int i=0;i<n;i++)
for (int j=0;j<n;j++)
MIiJ[j1=A[il+A[j];
return M;
}
This one is pretty easy to see since it has double nested loops that each execute n times, and
the amount of work done in the inner loop is constant.

xExercise 7.142. Which of the following algorithms have quadratic complexity? Briefly
justify your answers.

(a) The factorial algorithm from Example 3.40.

Answer

(b) An algorithm that tries to find the smallest element in an array of size n x n by searching
through the entire array.

Answer

*Question 7.143. We previously analyzed several sorting algorithms that were quadratic.
Name them

Answer

Definition 7.144 (Polynomial). Algorithms with running time ©(n*) for some constant
k are said to have polynomial complexity. We call such algorithms polynomial-time
algorithms. Notice that linear and quadratic are special cases of polynomial. When we
say an efficient algorithm exists to solve a problem, we typically mean a polynomial-time
algorithm.

Example 7.145. In Example 7.123, we saw that MatrixMultiply takes ©(n?) time. Since
3 is a constant, that is a polynomial-time algorithm. We also mentioned Strassen’s algorithm
that has a complexity of about ©(n?®). That is also a polynomial-time algorithm. It’s actual
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complexity is ©(nlos2 7).

Definition 7.146 (Exponential). Algorithms with running time ©(k™) for some constant k
are said to have exponential complexity. Since exponential algorithms can only be run for

small values of n, they are mot considered to be efficient. Brute-force algorithms are often
exponential.

Example 7.147. Since there are 2" binary numbers of length n, an algorithm that lists all
binary numbers of length n would take ©(2") time, which is exponential.

Note: As we have already seen, exponentials with different bases do not grow at the same
rate. Thus, two exponential algorithms do not belong to the same complexity class unless the
base of the exponent is the same. In other words, a™ # O(b"™) unless a = b.

Let me end on a very important note regarding analysis of algorithms and asymptotic growth
of functions. If algorithm A is faster than algorithm B, then the running time of A is less than
the running time of B. On the other hand, if A’s running time is asymptotically faster than
the running time of B, that means B is faster! In other words, the words fast/slow need to be
reversed when discussing algorithm speeds versus the growth of the functions. Put simply: A
faster growing complexity means a slower algorithm, and vice-versa.
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7.4 Problems

Problem 7.1. Prove Theorem 7.18.

Problem 7.2. O can be thought of as a relation on the set of positive functions, where (f, g) € ©
iff f(n)=©(g(n)). Prove that © is an equivalence relation.

Problem 7.3. Rank the following functions in increasing rate of growth. Indicate if two or more
functions have the same growth rate.

3 X
z!, 23, 2? logz, x, xlog??’, x5, 3%, xlogx, 2, 2", a:3/2, x1°g37, a:log(x2), x log(log(x)), <§)

Problem 7.4. Prove that 3n3 — 4n? 4+ 13n = O(n?3)
(a) Using the definition of O.

(b) Using limits.

Problem 7.5. Prove that 5n% — 7n = O(n?)

(a) Using the definition of © and/or Theorem 7.18.
(b) Using limits.

Problem 7.6. Prove that nlogn = o(n?).
Problem 7.7. Prove that log(x? + z) = ©(log z).
Problem 7.8. Prove that V522 + 11z = O(x).
Problem 7.9. Prove that n? = o(1.01").

Problem 7.10. Give tight bounds for the best and worst case running times of each of the
following in terms of the size of the input.

(a) void foo(int n) {
int foo = 0;
for(int 1 = 0 ; i < n ; i++)
foo += 1ij;

}

(b) void blah(int n) {
int blah = 0;
for(int 1 = 0 ; i < sqrt(m) ; i++)

blah += i;
}
Qﬂ void ferzle(int all, int n) {
int ferzle = 0;
for(int i = 0 ; i < n ; i++) {
for(int j = 0 ; j < mn ; j++) {

ferzle += alil*al[j];
if (ferzle==10000) {
j=n;

}
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(d) void ferzle2(int n) {

int ferzle = 0;
for(int i = 0 ; i < n ; i++) {
for(int j =i ; j < n ; j++) {
ferzle += ix*xj;
}
}
}
(e) void ferzle3(int al]l, int n) {
int ferzle = 0;
for(int i = 0 ; i < n ; i++) {
for(int j = 0 ; j < mn ; j++) {
ferzle += alil*al[j];
if (ferzle==10000) {
i=n;
}
}
}
}
(f) void ferzle4(int all, int n) {
int ferzle = 0;
for(int i = 0 ; i < n ; i++) {
for(int j = 0 ; j < n ; j++) {
ferzle += alilx*alj];
}
if (ferzle==10000) {
i=n;
}
}
}
(g) void gruhopil(int n) {
int gruhop = 0;
for(int 1 = 0 ; i < n/2 ; i++) {
for(int j = 0 ; j < n/2 ; j++) {
gruhop += 1ix*j;
}
}
}
(h) void gruhop2(int n) {
int gruhop = 0;
for(int i = 0 ; i < sqrt(m) ; i++)
for(int j = 0 ; j <n j++)
gruhop += 1ix*j;

259
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(i) int sumSomeStuff(int [JA) {
int sum=0;

int i=0;

while(i < A.length) {
sum = sum + A[i];
it++;
if (sum > 100000) {

i=A.length;

}

}

return sum;

(j) int doMoreStuff (int [1A) {
int sum=0;
for(int i=0 ; i < A.length ; i++) {
for(int j=0 ; j < A.length ; j++) {
sum = sum + A[il*A[j];
}
if (sum==123) {
i = A.length;
}
}

return sum;

(k) int sumTimesM(int [JA) {
int M = 100;
int sum=0;
for(int i=0 ; i < A.length ; i++) {
for(int j=0 ; j < M ; j++) {

sum = sum + A[j] + A[i];
if (sum==123) {
jo=
}
}
}
return sum;
}
(1) void foo(int n,int m) {
int foo = 0;
for(int 1 = 0 ; i < n ; i++)
foo++;
for(int j = 0 ; j < m ; j++)
foo++;
}
(m) void foo2(int n) { // Tricky one
int foo = 0;
for(int i = 0 ; sqrt(i) < n ; i++)

for(int j = 0 ; j < 1i; j++)
doIt(j) // takes j steps;
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(n) void HalfIt(int n) {
while(n > 0) {
n = n/2;
}
}

Problem 7.11. Consider the problem of computing the product of two matrices, A and B, where
Aislxmand Bis m X n.

(a) Give an efficient algorithm to compute the product A x B. Assume you have a Matrix type
with fields rows and columns that specify the number of rows/columns the matrix has. Thus,
you can call A.rows to get the number of rows A has, for instance. Also assume you can index
a Matrix like an array. Thus, A[i] [j] accesses the element in row ¢ and column j.

(b) Give the best and worst-case complexity of your algorithm.
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Chapter 8

Recursion, Recurrences, and
Mathematical Induction

In this chapter we will explore a proof technique, an algorithmic technique, and a mathematical
technique. Each topic is in some ways very different than the others, yet they have a whole lot in
common. They are also often used in conjunction.

You have already seen recurrence relations. Recall that a recurrence relation is a way of
defining a sequence of numbers with a formula that is based on previous numbers in the sequence.
You are probably also familiar with recursion, an algorithmic technique in which an algorithm
calls itself (such an algorithm is called recursive), typically with “smaller” input. Finally, the
principle of mathematical induction is a slick proof technique that works so well that sometimes
it feels like you are cheating.

We will see that induction can be used to prove formulas, prove that algorithms—especially
recursive ones—are correct, and help solve recurrence relations. Among other things, recurrence
relations can be used to analyze recursive algorithm. Recursive algorithms can be used to compute
the values defined by recurrence relations and to solve problems that can be broken into smaller
versions of themselves.

As we will see, each of these has one or more base cases that can be proved/computed/de-
termined directly and a recursive or inductive step that relies on previous steps. With each, the
inductive/recursive steps must eventually lead to a base case.

Because induction can be used to prove things about the other two, we will begin there.

8.1 Mathematical Induction

Let’s begin our study of mathematical induction (often just called induction) with an example that
should look familiar. It is actually Theorem 5.25 that we proved in an earlier chapter. Following
that, we will explain how /why induction works and give plenty of other examples.

Example 8.1. Let A be a set with n elements. Prove that |[P(A)| = 2".

Proof: We use induction and the idea from the solution to Exercise 5.21.
Clearly if |A| = 1, A has 2! = 2 subsets: & and A itself.

Assume every set with n — 1 elements has 2"~ ! subsets. Let A be a set with n
elements. Choose some x € A. Every subset of A either contains x or it doesn’t.

263
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Those that do not contain x are subsets of A\ {z}. Since A\ {z} hasn —1
elements, the induction hypothesis implies that it has 2"~! subsets. Every subset
that does contain x corresponds to one of the subsets of A\ {z} with the element
x added. That is, for each subset S C A\ {z}, SU{x} is a subset of A containing
x. Clearly there are 2"~! such new subsets. Since this accounts for all subsets of
A, A has 2771 4 27~1 = 2" subsets. O

Now we will go into detail about how and why induction works.

8.1.1 The Basics

The principle of mathematical induction (PMI, or simply induction) is usually used to prove
statements of the form

for all n > a, P(n) is true,

where a is an integer, and P(n) is a propositional function with domain {a,a+1,a+2,...}. Most
often a is either 0 or 1, so the domain is usually N or Z*.

Induction is based on the following fairly intuitive observation (which we will formalize next).
Suppose that we are to perform a task that involves a certain number of steps. Suppose that
these steps must be followed in strict numerical order. Finally, suppose that we know how to
perform the n-th task provided we have accomplished the (n — 1)-th task. Thus if we are ever
able to start the job (that is, if we have a base case), then we should be able to finish it (because
starting with the base case we go to the next case, and then to the case following that, etc.).

xExercise 8.2. Based on the description given so far, which of the following statements might
we be able to use induction to prove (indicate with ‘Y’ or ‘N’)? Give a brief justification.

(a) The square of any integer is positive.
(b) Every positive integer can be written as the sum of two other positive integers.
(c) Every integer greater than 1 can be written as the product of prime numbers.

- n(n+1)(2n+1)
d) _Ifn>1Y k=
k=1 6

(e) Every real number is the square of another real number.
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The following example illustrates the idea behind induction. It uses modus ponens. Recall
that modus ponens states that if p is true and p — ¢ is true, then ¢ is true. In English, “If p is
true, and whenever p is true ¢ is true, then ¢ is true.”!

Example 8.3. Assume that we know that P(1) is true and that whenever k > 1, P(k) —
P(k +1) is true. What can we conclude?

Solution:  Let’s start from the ground up. We know that P(1) is true. We
also know that P(k) — P(k + 1) is true for any integer k£ > 1. For instance, since
4 > 1, we know that P(4) — P(5) is true. It should be noted that we don’t (yet)
know anything about the truth values of P(4) and P(5).

We know P(1) is true, and since 1 > 1, P(1) — P(2) is true, so P(2) is true.
Since P(2) is true, and since 2 > 1, P(2) — P(3) is true, therefore P(3) is true.
Since P(3) is true, and since 3 > 1, P(3) — P(4) is true, therefore P(4) is true.
Since P(4) is true, and since 4 > 1, P(4) — P(5) is true, therefore P(5) is true.
Since P(5) is true, and since 5 > 1, P(5) — P(6) is true, therefore P(6) is true.
It seems pretty clear that this pattern continues for all values of k > 6 as well, so

P(k) is true for all £ > 1.

*Question 8.4. Example 8.3 had several statements like the following:
“Since P(4) is true, and since 4 > 1, P(4) — P(5) is true, therefore P(5) is true.”

What is the justification for the conclusion that P(5) is true?

Answer

Example 8.3 did not give a formal proof of the conclusion. The idea is to get you thinking
about how induction works, not to provide a formal proof that it does. Once you wrap your head
around it (it takes some people longer than others), you will believe it works regardless of whether
or not you have seen a formal/complete proof that it does.

Before moving on, we should make sure you understand what has already been said.

*Question 8.5. If you know that P(5) is true, and you also know that P(k) — P(k + 1)
whenever k£ > 1, what can you conclude?

Answer

Now it is time to get really formal with our discussion. Induction is based on the fact that
if P(a) is true for some a > 0 (the base case), and for any k > a, if P(k) is true, then P(k + 1)
is true (the inductive case), then P(n) is true for all n > a. In other words, the principle of
mathematical induction is based on the tautology

[P(a) A\Yk(P(k) — P(k+1))] = (¥nP(n)),

where the universe is {a,a + 1,a + 2,...}.

We can also write this as the tautology [p A (p — q)] = q.
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xExercise 8.6. Restate [P(a) AVE(P(k) — P(k+1))] — (YnP(n)) (where the universe is
{a,a+1,a+2,...}) in English.

Answer

We won’t prove that this is a tautology, but hopefully Example 8.3 helped convince you that it
is indeed a tautology. It is definitely worth your time to convince yourself that this is a tautology.
If you aren’t convinced, reread the example, think about it some more, and/or ask someone to help
you understand it.

*Question 8.7. Are you convinced that [P(a) A VE(P(k) — P(k+1))] — (VnP(n)) is a
tautology?

Answer

We call P(a) the base case. Sometimes we actually need to prove several base cases (we will
see why later). For instance, we might need to prove P(a), P(a + 1), and P(a + 2) are all true.

The inductive step involves proving that Vk(P(k) — P(k + 1)) is true. To prove it, we show
that if P(k) is true for any k which is at least as large as the base case(s), then P(k + 1) is true.
The assumption that P(k) is true is called the inductive hypothesis.

Based on our discussion so far, here is the procedure for writing induction proofs.

Procedure 8.8. To use induction to prove that YnP(n) is true on domain {a,a+1,...}:
1. Base Case: Show that P(a) is true (and possible one or more additional base cases).
2. Show that Yk(P(k) — P(k + 1)) is true. To show this:

(a) Inductive Hypothesis: Let k > a be an integer and assume that P(k) is true.

(b) Inductive Step: Prove that P(k+ 1) is true, typically using the fact that P(k) is
true.

Assuming we used no special facts about k other than k > a, this means we have
shown that VYk(P(k) — P(k + 1)) (again, where it is understood that the domain is

{a,a+1,...}).

3. Summary: Conclude that YnP(n) is true, usually by saying something like “Since
P(a) and P(k) — P(k+1) for all k > a, YnP(n) is true by induction.”

As you will quickly learn, the base case is generally pretty easy, as is writing down the inductive
hypothesis. The summary is even easier, since it almost always says the same thing. The inductive
step is the longest and most complicated step. In fact, in mathematics and theoretical computer
science journals, induction proofs often only include the inductive step since anyone reading papers
in such journals can generally fill in the details of the other three parts. But keep in mind that
you are not (yet) writing papers for such journals, so you cannot omit these steps!

Let’s see another example.
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Example 8.9. Prove that the sum of the first n odd integers is n?. That is, show that
n

Z(% —1)=mn?foralln > 1.

i=1

n

Proof: Let P(n) be the statement “Y (2i — 1) = n*”. We need to show that
i=1
P(n) is true for all n > 1.

1
Base Case: Since 2(21 ~1)=2-1-1=1=12, P(1) is true.
i=1
Inductive Hypothesis: Let k£ > 1 and assume that P(k) is true. That is, assume
k
that 2(22 —1) = k? when k > 1.

=1
Inductive Step: Then

k+1 k
d2i-1) = Y (2i—1)+ (2(k+1)—1) (take k+ 1 term from sum)
i=1 i=1

= K2+ (2k+2—-1) (by the inductive hypothesis)

= K+2k+1

= (k+1)°

Thus P(k + 1) is true.
Summary: Since we proved that P(1) is true, and that P(k) — P(k+1) whenever
k > 1, P(n) is true for all n > 1 by the principle of mathematical induction. [

The previous proof had the four components we discussed. We proved the base case. We then
assumed it was true for k. That is, we made the inductive hypothesis. Next we proved that it was
true for £ + 1 based on the assumption that it is true for k. That is, we did the inductive step.
Finally, we appealed to the principle of mathematical induction in the summary.

Note: Recall the following statement from Example 8.9:

n

Let P(n) be the statement <y (2i —1) = n?”.

i=1
Did you notice the quotes? It is important that you include these. This is particularly impor-
n

tant if you use notation such as P(n) = “Z(Zi — 1) =n?”. Without the quotes, this becomes

P(n) = 2(22 — 1) = n?, which is defining P(n) to be 2(22 — 1) and saying that it is also
i=1 =1
equal to n?. These are not saying the same thing. With the quotes, P(n) is a propositional

function. Without them, it is a function from Z to 7Z.
In fact, to avoid this confusion, I recommend that you mever use the equals sign with
propositional functions, especially when writing induction proofs.
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*Fill in the details 8.10. Reprove Theorem 6.48 using induction. That is, prove that for

”>1Z n+1)

b k(k+1)
Proof: Let P(k) be the statement “Zi = T”. We need to show that
i=1
P(n) is true for all n > 1.
1
Base Case: When k£ = 1, we have Zz =1= . Therefore,
i=1

Inductive Hypothesis: Let k£ > 1, and assume that

That is, assume that

[This is not part of the proof, but it will help us see what’s next. Our
goal in the next step is to prove that is true. That is, we

need to show that ]

Inductive Step: Notice that

k+1

Yio= + (k+1)
=1

— + (k + 1)(by the inductive hypothesis)

= (k+1)
Thus,
Summary: We showed that and that whenever ,
P(k) — P(k+1), therefore P(n) is true for by

0
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8.1.2 Equalities/Inequalities

The last few example induction proofs have dealt with statements of the form
LHS(k) = RHS(k),

where LHS stands for left hand side and RHS stands for right hand side. For instance, in

Example 8.9, the statement was
n

> (20 —1) =n?

=1
k
so LHS(k) = (2i — 1) and RHS(k) = k*.
=1

n

*Question 8.11. Let P(n) be the statement “Zz’ ~il = (n 4+ 1)! — 1.” Determine each of
i=1

the following:

(a) P(k) is the statement

(b) P(k+ 1) is the statement

(¢) LHS(k) =

(d) RHS(k) =

(e) LHS(k+1) =

(f) RHS(k+1) =

For statements of this form, the goal of the inductive step is to show that LHS(k + 1) =
RHS(k + 1) given the fact that LHS(k)=RHS(k) (the inductive hypothesis). The way this
should generally be done is as follows:

Procedure 8.12. Given a proposition of the form “LHS(n) = RHS(n),” the algebra in the
inductive step of an induction proof should be done as follows:

LHS(k+1) = LHS(k)+stuff (apply algebra to separate LHS(k) from the rest)
= RHS(k)+ stuff (use the inductive hypothesis to replace LHS (k) with
RHS(k))

(1 or more steps, usually involving algebra, that
RHS(k+1) result in the goal of getting to RHS(k+1))
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The last few examples followed this procedure, and your proofs should also follow it. Notice that
these examples do not begin the inductive step by writing out LHS(k + 1) = RHS(k + 1). One
of them wrote it out, but it was before the inductive step for the purpose of making the goal in
the inductive step clear. The inductive step should always begin by writing just LHS(k+1), and
should then use algebra, the inductive hypothesis, etc., until RHS(k + 1) is obtained.

This technique also works (with the appropriate slight modifications) with inequalities, e.g.

LHS(k) < RHS(k) and

LHS(k) > RHS(k).
For instance, if P(k) is the statement “k > 2% LHS(k) = k, and RHS(k) = 2*. In addition,

the ‘+stuf f’ is not always literally addition. For instance, it might be LHS(k) x stuff.
Here is another example of this type of induction proof—this time using an inequality.

Example 8.13. Prove that n < 2" for all integers n > 1.

Proof: Let P(n) be the statement “n < 2"”. We want to prove that P(n) is
true for all n > 1.

Base Case: Since 1 < 2%, P(1) is clearly true.

Hypothesis: We assume P(k) is true if k& > 1. That is, k < 2.

Next we need to show that P(k + 1) is true. That is, we need to show
that (k4 1) < 21 (Notice that I did not state that this was true,
and I do not start with this statement in the next step. I am merely
pointing out what I need to prove.) This paragraph is not really part of
the proof-think of it as a side-comment or scratch work.

Inductive: Given that k < 2%, we can see that

E+1 < 2841 (since k < 2¥)
< 2F 428 (since 1 < 2% when k > 1)
= 2(2%)
— 9k+1

Since we have shown that k + 1 < 251 P(k + 1) is true.
Summary: Since we proved that P(1) is true, and that P(k) — P(k + 1), by
PMI, P(n) is true for all n > 1. O

In the previous example, LHS (k) = k, so LHS(k+1) is already in the form LHS (k) + stuf f
since LHS(k+1) =k+1= LHS(k)+ 1. So the first step of algebra is unnecessary and we were
able to apply the inductive hypothesis immediately. Don’t let this confuse you. This is essentially
the same as the other examples minus the need for algebra in the first step.

Note: By the time you are done with this section, you will likely be tired of hearing this,
but since it is the most common mistake made in induction proofs, it is worth repeating ad
nauseam. Never begin the inductive step of an induction proof by writing down
Pk +1). You do not know it is true yet, so it is not valid to write it down as if it were true
so that you can use a technique such as working both sides to verify that it is true (which, as
we have also previously stated, is not a valid proof technique).
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You can (and sometimes should) write down P(k + 1) on another piece of paper or with
a comment such as “We need to prove that” preceding it so that you have a clear direction
for the inductive step.

If you can complete the next exercise without too much difficulty, you are well on your way
to understanding how to write induction proofs.

“ nn+1)2n+1
xExercise 8.14. Use induction to prove that for all n > 1, Z 2= (n+ )6( + )

i=1
(Hint: Follow the techniques and format of the previous examples and be smart about your
algebra and it will go a lot easier. Also, you will need to factor a polynomial in the inductive
step, but if you determine what the goal is ahead of time, it shouldn’t be too difficult.)

Proof:
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8.1.3 Variations

In this section we will discuss a few slight variations of the details we have presented so far. First
we discuss the fact that we do not need to use a propositional function. Then we will discuss a
variation regarding the inductive hypothesis.

It is not always necessary to explicitly define P(k) for use in an induction proof. P(k) used
mostly for convenience and clarity. For instance, in the solution to the previous exercise, it allowed
us to just say

“P(k) is true”
instead of saying

ui ,L~2 o TL(TL + 1)(271 + 1))7

6 (which is long)

1=1

or
“the statement is true for k” (which is a little vague/awkward).

Here is an example that does not use P(k). It also does not label the four parts of the proof.
That is perfectly fine. The main reason we have done so in previous examples is to help you
identify them more clearly.

Example 8.15. Let f,, be the n-th Fibonacci number. Prove that for all integers n > 1,
Samidfos = s 4 (=10
Proof: For k =1, we have
fofa=0-1=0=1-1=1%+(-1)} = f2 4 (-1)},

and so the assertion is true for £k = 1. Suppose k > 1, and that the assertion is
true for k. That is,

Fro1fror1 = f2 + (=1)F.

This can be rewritten as

ff = fe1fiqr — (DF
(a fact that we will find useful below). Then

Tefeee = folfesr + fr) (by the definition of f,, applied to fry2)
Srfrr1 + f2

fufee1 + fre1fre1 — (=1F  (by the rewritten inductive hypothesis)
Fior1(fr + frm1) + (=1)F+1

= frr1frt + (—1)F1 (by the definition of f})

= fia+ (DR,

and so the assertion is true for k + 1. The result follows by induction. O
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xExercise 8.16. Use induction to prove that for all n > 1,
1-24+2.2243.22+... 4 n-2" =2+ (n—1)2""!
or if you prefer,

n
»i-2 =24 (n—1)2""
=1

Do so without using a propositional function. You may label the four parts of your proof,
but it is not required.

Proof:
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Example 8.17. Prove the generalized form of DeMorgan’s law. That is, show that for any
n > 2, if p1, po, ..., pp are propositions, then

“(p1Vp2V---Vpy)=(p1 Ap2 A App).

We provide several appropriate proofs of this one (and one inappropriate one).

Proof 1: (A typical proof)

Let P(n) be the statement “—(p1 Vpa2 V---Vpp) = (-p1 A= pa A--- A=pp).” We
want to show that for all n > 2, P(n) is true. P(2) is DeMorgan’s law, so the
base case is true. Assume P(k) is true. Then

(prVpaV---Vpgr1) = —((p1Vp2V--Vpr)Vprs1) associative law
= —(p1Vp2V---VpE) A Prt1 DeMorgan’s law
= (=p1 A—pa A=+ A=pg) A —prr1 hypothesis
= (p1 A—p2A--- A-pp A pgt1) associative law

Thus P(k+1) is true. Since we proved that P(2) is true, and that P(k) — P(k+1)
if k> 2, by PMI, P(n) is true for all n > 2. O

Proof 2: (Not explicitly defining/using P(n))

We know that —(p; V p2) = (—p1 A —p2) since this is simply DeMorgan’s law.
Assume the statement is true for k. That is, —=(py Vpa V- -+ V pr) = (=p1 A =p2 A
-+ A =pg). Then we can see that

“(p1VpeV---Vpey) = ((prVpaV---Vpr)Vpey1)  associative law
= —(p1Vp2V---VpE) A Prt1 DeMorgan’s law
= (=p1 A—pa A+ A=pg) A —pry1  hypothesis
= (p1 A—pa A--- A—pgp A —pr+1) associative law

Thus the statement is true for £ + 1. Since we have shown that the statement is
true for n = 2, and that whenever it is true for k it is true for k + 1, by PMI, the
statement is true for all n > 2. O

Sometimes it is acceptable to omit the justification in the summary. That is, there
1sn’t necessarily a need to restate what you have proven and you can just jump to
the conclusion. So the previous proof could end as follows:

Thus the statement is true for &+ 1. By PMI, the statement is true for
all n > 2.

Proof 3: (common in journal articles, unacceptable for this class)

The result follows easily by induction. O
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n
*Evaluate 8.18. Prove that for all positive integers n, Zz il=(n+ 1) - 1.

i=1
Solution: Base: n =
[0 = (4D -]
| = 21|
| = |
n
Assume Zi Al=(n+DI =] forn>|
i=l
IndueftIOr\‘:
N+ n
Zi-i! = ZL'\!—Hr\—I-D(r\—FD!
i=l i=l
= (n+DI=14Nn4+DNn=+D!
= (n+14+DINn+DI -]
= (n4+D(Nn+DI—|
= (n+2—|

Therefore it is true for n. Thus By PMl it is true for n > |

Evaluation

The second variation we wish to discuss has to do with the inductive hypothesis/step. In the
inductive step, we can replace P(k) — P(k + 1) with P(k — 1) — P(k) as long as we prove the
statement for all k larger than any of the base cases. In general, we can use whatever index we
want for the inductive hypothesis as long as we use it to prove that the statement is true for the
next index, and as long as we are sure to cover all of the indices down to the base case. For
instance, if we prove P(k + 3) — P(k +4), then we need to show it for all k4 3 > a (that is, all
k > a — 3), assuming a is the base case. Put simply, the assumption we make about the value of
k must guarantee that the inductive hypothesis includes the base case(s).

*Question 8.19. Consider a ‘proof’ of VnP(n) that shows that P(1) is true and that P(k) —
P(k+1) for k > 1. What is wrong with such a proof?

Answer
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Note: Whether you assume P(k) or P(k—1) is true, you must specify the values of k precisely
based on your choice. For instance, if you assume P(k) is true for all k > a, you have a
problem. Although you known P(a) is true (because it is a base case), when you assume
P(k) is true for k > a, the smallest k can be is a + 1. In other words, when you prove
P(k) — P(k+1), you leave out P(a) — P(a+ 1). But that means you can’t get anywhere
from the base case, so the whole proof is invalid.

If you are wondering why we would use P(k — 1) as the inductive hypothesis instead of P(k),
it is because sometimes it makes the proof easier—for instance, the algebra steps involved might
be simpler.

Example 8.20. Prove that the expression
333 _ 926n — 27

is a multiple of 169 for all natural numbers n.

Proof: Let P(k) be the statement “3%%3 — 26k — 27 = 169N for some N € N.”
We will prove that P(1) is true and that P(k — 1) — P(k).

When k = 1 notice that 33173 —26.1 — 27 = 676 = 169 - 4, so P(1) is true.

Let k > 1 and assume P(k — 1) is true. That is, there is some N € N such that
33k—1)+3 _ 96(k — 1) — 27 = 169N. After a little algebra, this is the same as
3%% — 26k — 1 = 169N. Then

33k+3 _ 26k —27 = 27-3% — 26k — 27
= 27-3%% 4 (26 — 27)26k — 27
= 27.3% _27.26k — 27+ 26 - 26k
= 27(3%% — 26k — 1) + 676k
= 27-169N + 169 - 4k (By the inductive hypothesis)
= 169(27 - N + -4k)

which is divisible by 169. The assertion is thus established by induction. O

*Question 8.21. Did you notice that in the previous example we assumed &k > 1 instead of
k > 17 Why did we do that?

Answer

8.1.4 Strong Induction

The form of induction we have discussed up to this point only assumes the statement is true for
one value of k. This is sometimes called weak induction. In strong induction, we assume that the
statement is true for all values up to and including k. In other words, with strong induction, the
inductive hypothesis involves proving that

[P(a)AP@+1)A---APK)] = Pk +1) if k > a.
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This may look more complicated, but practically speaking, there is really very little difference.
Essentially, strong induction just allows us to assume more than weak induction. Let’s see an
example of why we might need strong induction.

Example 8.22. Show that every integer n > 2 can be written as the product of primes.

Proof: Let P(n) be the statement “n can be written as the product of primes.”
We need to show that for all n > 2, P(n) is true.

Since 2 is clearly prime, it can be written as the product of one prime. Thus P(2)
is true.

Assume [P(2) A P(3) A--- A P(k — 1)] is true for k > 2. In other words, assume
all of the numbers from 2 to £ — 1 can be written as the product of primes.

We need to show that P(k) is true. If k is prime, clearly P(k) is true. If k is not
prime, then we can write k = a - b, where 2 < a < b < k. By hypothesis, P(a) and
P(b) are true, so a and b can be written as the product of primes. Therefore, k can
be written as the product of primes, namely the primes from the factorizations of
a and b. Thus P(k) is true.

Since we proved that P(2) is true, and that [P(2) AP(3)A---AP(k—1)] — P(k)
if & > 2, by the principle of mathematical induction, P(n) is true for all n > 2.
That is, every integers n > 2 can be written as the product of primes. ]

Example 8.23. In the country of SmallPesia coins only come in values of 3 and 5 pesos.
Show that any quantity of pesos greater than or equal to 8 can be paid using the available
coins.

Proof: Base Case: Observe that 8 =3+4+5,9=3+4+3+3, and 10 =5+ 5, so
we can pay 8, 9, or 10 pesos with the available coinage.

Inductive Hypothesis: Assume we can pay any value from 8 to k — 1 pesos,
where k > 11.

Inductive step: The inductive hypothesis implies that we can pay with & — 3
pesos. We can add to the coins used for k — 3 pesos a single coin of value 3 in
order to pay for k pesos.

Summary: Since we can pay for 8, 9, and 10 pesos, and whenever we can pay
for anything between 8 and k& — 1 pesos we can pay for k pesos, the strong form
of induction implies that we can pay for any quantity of pesos n > 8.

Notice that the reason we needed three base cases for this proof was the fact that
we looked back at k — 3, three value previous to the value of interest. If we had
only proven it for 8, we would have needed to prove 9 and (more importantly) 10
in the inductive step. But the inductive step doesn’t work for 10 since there is no
solution for 10 — 3 = 7 pesos. g

Notice that there is no way we could have used weak induction in either of the previous
examples.
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8.1.5 Induction Errors

The following examples should help you appreciate why we need to be very precise/careful when
writing induction proofs.

Example 8.24. What is wrong with the following (supposed) proof that a™ = 1 for n > 0:

Proof: Base case: Since a® = 1, the statement is true for n = 0.
Inductive step: Let k > 0 and assume o’ =1 for 0 < j < k. Then

k. k .
g gt 11
ak= 1
Summary: Therefore by PMI, a™ =1 for all n > 0. O
Solution: The base case is correct, and there is nothing wrong with the

summary, assuming the inductive step is correct. ¥ =1 and a*~! = 1 are correct
by the inductive hypothesis since we are assuming k > 0. The algebra is also
correct. So what is wrong? The problem is that when k& = 0, a~! would be in
the denominator. But we don’t know whether or not a=' = 1. Thus we needed
to assume k£ > 0. As it turns out, that is precisely where the problem lies. We
proved that P(0) is true and that P(k) — P(k + 1) is true when k£ > 0. Thus,
we know that P(1) — P(2), and P(2) — P(3), etc., but we never showed that
P(0) — P(1) because, of course, it isn’t true. The induction doesn’t work without
P(0) — P(1).

xEvaluate 8.25. Prove or disprove that all goats are the same color.

Solution: £ there is one Goat, it is oBviously the same color as itself.
Let N > | and assume that any collection of N coats are all the same
color. Consider a collection of N+ goats. Numpeer the aoats | throush
N+ Then goats | throuah N are the same color (since there are N
of them) and coats 2 throuch Nn+| are the same color (aaain, since
there are n of them). Since coat 2 is in BOth collections, the coats
in BOth collections are the same color. Thus, all N+ goats are the
same color.

Evaluation

The next example deals with binary palindromes. Binary palindromes can be defined recur-
sively by A\,0,1 € P, and whenever p € P, then 1pl € P and 0p0 € P. (Note: A is the notation
sometimes used to denote the empty string—that is, the string of length 0. Also, 1p1 means the
binary string obtained by appending 1 to the begin and end of string p. Similarly for 0p0.) Notice
that there is 1 palindrome of length 0 (X), 2 of length 1 (0, 1), 2 of length 2 (00, 11), 4 of length
3 (000, 010, 101, 111), etc.
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*Evaluate 8.26. Use induction to prove that the number of binary palindromes of length
2n (even length) is 2™ for all n > 0.

Proot |: Base case: k =1 The total numeer of palindromes of lenath 2 =2
is 2'=2 Kis true.
Assuwie the total numeer of Binary palindromes with lenath 2k is 2% To
form a Binary palindrome with lenath 2(k+N = 2k+72, with every element in
the set of Rinary palindromes with lenath 2k we either put (OO or (N to
the end or reainning of it. Therefore, the numeer of rRinary palindromes
with lenath 2(k +D is twice as many as the nuveer of Binary palindromes
with lenath 2k, which is 2 x 2k = 2k Thus it is true for k +1 By the
principle of mathematical induction, the total numrer of rinary palindromes
of lenath 2N forn >1|is 2™

Evaluation

Proot 2: For the Base case, notice that there is | = 29 palindromes of
lenath O (the empty string). Now assume it is true for all n. For each
consecutive BiNary Nnumeer with N Bits, you are adding a Bit to either end,
which muttiplies the total numeer By 27 permutations, But for it to e
a palindrome, they Both have to Be either O or [, so it would just re 2
instead, so £or Rinary numeers of lenath 2k, there are 2* palindromes.

Evaluation

Proo$ 3: The empty string is the only string of lenath O, and it is a palin-
drome. Thus there is | = 2.9 palindromes of lenath O. Let 2N ge the lenath,
assume 2N — 2" palindromes. Now we ook at n=+[ so we know the lenath
is 2N+ 2 and it starts and ends with either O or | and has 2n values in
getween Both possisilities imply 2" palindromes, so 2"+ 2" = 2"

Evaluation
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xExercise 8.27. Based on the feedback from the previous Evaluate exercise, construct a
proper proof that the number of binary palindromes of length 2n is 2" for all n > 0.
Proof:

8.1.6 Summary/Tips

Induction proofs are both intuitive and non-intuitive. On the one hand, when you talk through
the idea, it seems to make sense. On the other hand, it almost seems like you are using circular
reasoning. It is important to understand that induction proofs do not rely on circular reasoning.
Circular reasoning is when you assume p in order to prove p. But here we are not doing that. We
are assuming P(k) and using that fact to prove P(k + 1), a different statement. However, we are
not assuming that P(k) is true for all £ > a. We are proving that if we assume that P(k) is
true, then P(k + 1) is true. The difference between these statements may seem subtle, but it is
important.

Let’s summarize our approach to writing an induction proof. This is similar to Procedure 8.8
except we include several of the unofficial steps we have been using that often come in handy.
You are not required to use this procedure, but if you are having a difficult time with induction
proofs, try this out. Here is the brief version. After this we provide some further comments about
each step.
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Procedure 8.28. A slightly longer approach to writing an induction proof is as follows:
1. Define: (optional) Define P(n) based on the statement you need to prove.

2. Rephrase: (optional) Rephrase the statement you are trying to prove using P(n).

3. Base Case: Prove the base case or cases.

4. Inductive Hypothesis: Write down the inductive hypothesis. Usually it is as simple

5. Goal: (optional) Write out the goal of the inductive step (coming next). It is usually

6. Inductive: Prove the goal statement, usually using the inductive hypothesis.

7. Summary: The typical induction summary.

This step is mostly to help you be clear on what you need to prove.

as “Assume that P(k) is true”.

“I need to show that P(k+ 1) is true” It can be helpful to explicitly write out P(k+ 1),
although see important comments about this step below. This is another step that is
mostly for your own clarity.

Here are some comments about the steps in Procedure 8.28.

1.

Define: P(n) should be a statement about a single instance, not about a series of instances.
For example, it should be statements like “2n is even” or “A set with n elements has 2"
subsets.” It should NOT be of the form “2n is even if n > 1,” “n? > 0if n # 0,” or “For all
n > 1, a set with n elements has 2" subsets.”

Rephrase: In almost all cases, the rephrased statement should be “For all n > a, P(n) is
true,” where a is some constant, often 0 or 1. If the statement cannot be phrased in this
way, induction may not be appropriate.

. Base Case: For most statements, this means showing that P(a) is true, where a is the

value from the rephrased statement. Although usually one base case suffices, sometimes one
must prove multiple base cases, usually P(a), P(a+ 1), ..., P(a + 1) for some ¢ > 0. This
depends on the details of the inductive step.

. Inductive Hypothesis: This is almost always one of the following:

e Assume that P(k) is true.
e Assume that P(k — 1) is true.
e Assume that [P(a) A P(a+ 1) A--- A P(k)] is true (strong induction)

Sometimes it is helpful to write out the hypothesis explicitly (that is, write down the whole
statement with & or k£ — 1 plugged in).

. Goal: As previously stated, this is almost always “I need to show that P(k+1) is true” (or

“I need to show that P(k) is true”). But it can be very helpful to explicitly write out what
P(k + 1) is so you have a clear direction for the next step. However, it is very important
that you do not just write out P(k + 1) without prefacing it with a statement like “I need to
show that...”. Since you are about to prove that P(k + 1) is true, you don’t know that it is
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true yet, so writing it down as if it is a fact is incorrect and confusing. In fact, it is probably
better write the goal separate from the rest if the proof (e.g. on another piece of paper).

The goal does not need to be written down and is not really part of the proof. The only
purpose of doing so it to help you see what you need to do in the next step. For instance,
knowing the goal often helps you to figure out the required algebra steps to get there.

. Inductive: This is the longest, and most varied, part of the proof. Once you get the hang

of induction, you will typically only think about two parts of the proof—the base case and
this step. The rest will become second nature.

The inductive step should not start with writing down P(k + 1). Some students want to
write out P(k + 1) and work both sides until they get them to be the same. As we have
emphasized on several occasions, this is not a proper proof technique. You cannot start with
something you do not know and then work it until you get to something you do know and
then declare it is true.

Summary: This is easy. It is almost always either:

“Since we proved that P(a) is true, and that P(k) — P(k + 1), for k > a, then
we know that P(n) is true for all n > a by PMI,” or

“Since we proved that P(a) is true, and that [P(a) A P(a + 1) A --- A P(k)] —
P(k+1), for k > a, P(n) is true for all n > a by PMIL”

The details change a bit depending on what your inductive hypothesis was (e.g. if it was
P(k — 1) instead of P(k)). Technically speaking, you can just summarize your proof by
saying

“Thus, P(n) is true for all n > a by PMI”

As long as someone can look back and see that you included the two necessary parts of the
proof, you do not necessarily need to point them out again.
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8.2 Recursion

You have seen examples of recursion if you have seen Russian Matryoshka dolls (Google it), two
almost parallel mirrors, a video camera pointed at the monitor, or a picture of a painter painting
a picture of a painter painting a picture of a painter... More importantly for us, recursion is a very
useful tool to implement algorithms. You probably already learned about recursion in a previous
programming course, but we present the concept in this brief section for the sake of review, and
because it ties in nicely with the other two topics in this chapter.

Definition 8.29. An algorithm is recursive if it calls itself.

Examples of recursion that you may have already seen include binary search, Quicksort, and
Mergesort.

*Question 8.30. Is following algorithm recursive? Briefly explain.

int ferzle(int n) {
if (n<=0) {
return 3;
} else {
return ferzle(n-1) + 2;

}

Answer

If a subroutine/function simply called itself as a part of its execution, it would result in infinite
recursion. This is a bad thing. Therefore, when using recursion, one must ensure that at some
point, the subroutine/function terminates without calling itself. We will return to this point after
we see what is perhaps the quintessential example of recursion.

Example 8.31. Notice that

o =1
1 =1 = 1x0!
20 = 2x1 = 2x1!
3 = 3x2x1 = 3x2
4! = 4x3x2x1 = 4x3!
and in general, when n > 1,
nl = nx(n—-1)x---x2x1 = nx(n-1)

In other words, we can define n! recursively as follows:

ol — 1 when n =0
" | nx(n—1)! otherwise.
This leads to the following recursive algorithm to compute n!.

// Returns n!, assuming n>=0.
int factorial(int n) {
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if (n<=0) {
return 1;
} else {
return n*xfactorial(n-1);
}
}

To guarantee that they will terminate, every recursive algorithm needs all of the following.

1. Base case(s): One or more cases which are solved non-recursively. In other words, when an
algorithm gets to the base case, it does not call itself again. This is also called a stopping
case or terminating condition.

2. Inductive case(s): One or more recursive rule for all cases except the base case.

3. Progress: The inductive case(s) should always progress toward the base case. Often this
means the arguments will get smaller until they approach the base case, but sometimes it
is more complicated than this.

Example 8.32. Let’s take a closer look at the factorial algorithm from Example 8.31.
Notice that if n < 0, factorial does not make a recursive call. Thus, it has a base case.
Also notice that when a recursive call is made to factorial, the argument is smaller, so it is
approaching a base case (i.e. making progress). When n > 0, it is clearly making a recursive
call, so it has inductive cases.

*Question 8.33. Consider the ferzle algorithm from Question 8.30 above.

(a) What is/are the base case/cases?

Answer

(b) What are the inductive cases?

Answer

(¢) Do the inductive cases make progress?

Answer

Example 8.34. Prove that the recursive factorial(n) algorithm from Example 8.31 returns
n! for all n > 1.

Proof:  Notice that if n = 0, factorial(0) returns 1 = 0!, so it works in that
case. For k > 0, assume factorial(k) works correctly. That is, it returns k!.
factorial (k+1) return k + 1 times the value returned by factorial(k). By the
inductive hypothesis, factorial (k) returns k!, so factorial (k+1) returns (k+1) x
k!'= (k+ 1)!, as it should. By PMI, factorial(n) returns n! for all n > 0. O
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Example 8.35. Implement an algorithm countdown(int n) that outputs the integers from n
down to 1, where n > 0. So, for example, countdown(5) would output “54 3 2 1”.

Solution: One way to do this is with a simple loop:

void countdown(int n) {
for(i=n;i>0;i--)
print (i);
}

We wouldn’t learn anything about recursion if we used this solution. So let’s
consider how to do it with recursion. Notice that countdown(n) outputs n followed
by the numbers from n — 1 down to 1. But the numbers n — 1 down to 1 are the
output from countdown(n-1). This leads to the following recursive algorithm:

void countdown(int n) {
print(n);
countdown(n-1):

}

To see if this is correct, we can trace through the execution of countdown(3). The
following table give the result.

Execution of outputs then executes
countdown (3) 3 countdown (2)
countdown (2) 2 countdown (1)
countdown (1) 1 countdown (0)
countdown (0) 0 countdown (-1)
countdown(-1) -1 countdown (-2)

Unfortunately, countdown will never terminate. We are supposed to stop printing
when n = 1, but we didn’t take that into account. In other words, we don’t
have a base case in our algorithm. To fix this, we can modify it so that a call to
countdown (0) produces no output and does not call countdown again.

Calls to countdown(n) should also produce no output when n < 0. The following
algorithm takes care of both problems and is our final solution.

void countdown(int n) {
if (n>0) {
print (n);
countdown(n-1) :

}

Notice that when n < 0, countdown(n) does nothing, making n < 0 the base cases.
When n > 0, countdown(n) calls countdown(n-1), making n > 0 the inductive
cases. Finally, when countdown(n) makes a recursive call it is to countdown(n-1),
so the inductive cases progress to the base case.
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*Exercise 8.36. Prove that the recursive countdown(n) algorithm from Example 8.35 works
correctly. (Hint: Use induction.)
Proof:

In general, we can solve a problem with recursion if we can:

1. Find one or more simple cases of the problem that can be solved directly.

2. Find a way to break up the problem into smaller instances of the same problem.
3. Find a way to combine the smaller solutions.

Let’s see a few classic examples of the use of recursion.

Example 8.37. Consider the binary search algorithm to find an item v on a sorted list of
size n. The algorithm works as follows.

e We compare the middle value m of the array to v.

e If the m = v, we are done.

e Else if m < v, we binary search the left half of the array.
e Else (m > v), we binary search the right half of the array.
e Now, we have the same problem, but only half the size.

In Example 7.129 we saw the following iterative implementation of binary search:

int binarySearch(int al[]l, int n, int val) {
int left=0, right=n-1;
while (right>=left) {
int middle = (left+right)/2;
if (val==a[middle])
return middle;
else if(val<a[middle])
right=middle-1;
else
left=middle+1;
}

return -1;
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Here is a version that uses recursion. In this version we need to pass the endpoints of the
array so we know what part of the array we are currently looking at.

int binarySearch(int[] a, int left, int right, int val) {
if (right>=1left) {
int middle = (left+right)/2;
if (val==a[middle])
return middle;
else if(val<al[middle])
return binarySearch(a,left,middle-1,val);
else
return binarySearch(a,middle+1,right,val);
} else {
return -1;
}
}

You should notice that in this case, the iterative and recursive algorithms are very similar,
and it is not clear that one implementation is better than the other. However, if you were
asked to write the algorithm from scratch, it is probably easier to get the details right for the
recursive one.

Example 8.38. Prove that the recursive binarySearch algorithm from Example 8.37 is
correct.

Proof: We will prove it by induction on n = right — left + 1 (that is, the size
of the array).

Base case: If n = 0, that means right < left, and binarySearch returns —1 as
it should (since val cannot possible be in an empty array). So it works correctly
for n = 0.

Inductive Hypothesis: Assume that binarySearch works for arrays of size 0
through k£ — 1 (we need strong induction for this proof).

Inductive step: Assume binarySearch is called on an array of size k. There
are three cases.

e If val = a[middle], the algorithm returns middle which is the correct answer.

e If val < a[middle], a recursive call is made on the first half of the array (from
left to middle — 1). Because a is sorted, if val is in the array, it is in that
half of the array, so we just need to prove that the recursive call returns the
correct value. Notice that the first half of the array has less than n elements
(it does not contain middle or anything to the right of middle, so it is clearly
smaller by at least one element). Thus, by the inductive hypothesis, it returns
the correct index or —1 if val is not in that part of the array. Therefore it
returns the correct value.

e The case for val > a[middle] is symmetric to the previous case and the details
are left to the reader.

In all cases, it works correctly on an array of size k.
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Summary: Since it works for an array of size 0 and whenever it works for arrays
of size at most k — 1 it works for arrays of size k, by the principle of mathematical
induction, it works for arrays of any nonnegative size. O

Note: You might think the base case in the previous proof should be n = 1, but that is not
actually correct. A failed search will always make a final call to binarySearch with n = 0. If
we don’t prove it works for an empty array then we cannot be certain that it works for failed
searches.

Example 8.39. Recall the Fibonacci sequence, defined by the recurrence relation

0 if n=0
fn= 1 if n=1
fac1+ fan—2 ifn>1

Let’s see an iterative and a recursive algorithm to compute f,,. The iterative algorithm (on
the left) starts with fy and f; and computes each f; based on f;_1 and f;_o for ¢ from 2 to
n. As it goes, it needs to keep track of the previous two values. The recursive algorithm (on
the right) just uses the definition and is pretty straightforward.

int Fib(int n) { int FibR(int n) A
int fib; if(n <= 1) {
if(n <= 1) { return (n) ;
return (n) ; } else {
} else { return (FibR(n-1)+FibR(n-2));
int fibm2=0; }
int fibml=1; }

int index=1;

while (index < n) {
fib=fibml+£fibm2;
fibm2=fibmil;
fibml=fib;
index++;

}

return (fib) ;

*Question 8.40. Which algorithm is better, Fib or FibR? Give several reasons to justify
your answer.

Answer
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Although recursion is a great technique to solve many problems, care must be taken when
using it. It easy to make simple mistakes like we did in Example 8.35. They can also be very
inefficient on occasion, as we alluded to in the previous example (and will prove later). In addition,
recursive algorithms often take more memory than iterative ones, as we will see next.

Example 8.41. Consider our algorithms for n!. The iterative one from Example 3.40 uses
memory to store four numbers: n, f, ¢, and return value.* The recursive one from Example
8.31 uses memory to store two numbers: n and the return value. Although the recursive
algorithm uses less memory, it is called multiple times, and every call needs its own memory.
For instance, a call to factorial (3) will call factorial (2) which will call factorial(1). Thus,
computing 3! requires enough memory to store 6 numbers, which is more than the 4 required
by the iterative algorithm. In general, the recursive algorithm to compute n! will need to
store 2n numbers, whereas the iterative one will still just need 4, no matter how large n gets.

“T won’t get technical here, but memory needs to be allocated for the value returned by a function.

Since computers have a finite amount of memory, and since every call to a function requires
its own memory, there is a limit to how many recursive calls can be made in practice. In fact
some languages, including Java, have a defined limit of how deep the recursion can be. Even for
those that don’t have a limit, if you run out of memory, you can certainly expect bad things to
happen. This is one of the reasons recursion is avoided when possible.

Good compilers attempt to remove recursion, but it is not always possible. Good programmers
do the same. Since recursive algorithms are often more intuitive, it often makes sense to think
in terms of them. But many recursive algorithms can be turned into iterative algorithms that
are as efficient and use less memory. There is no single technique to do so, and it is not always
necessary, but it is a good thing to keep in mind.

Let’s see a few more examples of the subtle problems that we can run into when using recursion.

Example 8.42. The following algorithm is supposed to sum the numbers from 1 to n:

void SumltoN(int n) {
if (n == 0) return(0);
else return(n + SumitoN(n-1));
+
Although this algorithm works fine for non-negative values of n, it will go into infinite
recursion if n < 0. Like our original solution to the countdown problem, the mistake here is
an improper base case.

It is easy to get things backwards when recursion is involved. Consider the following example.
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*Question 8.43. One of these routines prints from 1 up to n, the other from n down to 1.
Which does which?

void PrintN(int n) { void NPrint (int n) {
if (n > 0) { if (N > 0) {
PrintN(n-1); print(n);
print(n); NPrint (n-1);
} }
} }
Answer

We conclude this section by summarizing some of the advantages and disadvantages of recur-
sion.
The advantages include:

1. Recursion often mimics the way we think about a problem, thus the recursive solutions can
be very intuitive to program.

2. Often recursive algorithms to solve problems are much shorter than iterative ones. This can
make the code easier to understand, modify, and/or debug.

3. The best known algorithms for many problems are based on a divide-and-conquer approach:

e Divide the problem into a set of smaller problems
e Solve each small problem separately

e Put the results back together for the overall solution

These divide-and-conquer techniques are often best thought of in terms of recursive algo-
rithms.

Perhaps the main disadvantage of recursion is the extra time and space required. We have
already discussed the extra space. The extra time comes from the fact that when a recursive
call is made, the operating system has to record how to restart the calling subroutine later on,
pass the parameters from the calling subroutine to the called subroutine (often by pushing the
parameters onto a stack controlled by the system), set up space for the called subroutine’s local
variables, etc. The bottom line is that calling a function is not “free”.

Another disadvantage is the fact that sometimes a slick-looking recursive algorithm turns
out to be very inefficient. We alluded to this in Example 8.40. On the other hand, if such
inefficiencies are found, there are techniques that can often easily remove them (e.g. a technique
called memoization?). But you first have to remember to analyze your algorithm to determine
whether or not there might be an efficiency problem.

2No, that’s not a typo. Google it.
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8.3 Solving Recurrence Relations

Recall that a recurrence relation is simply a sequence that is recursively defined. More formally,
a recurrence relation is a formula that defines a,, in terms of a;, for one or more values of i < n.3

Example 8.44. We previously saw that we can define n! by 0! = 1, and if n > 0, n! =
n - (n — 1)I. This is a recurrence relation for the sequence n!.

Similarly, we have seen the Fibonacci sequence several times. Recall that n-th Fibonacci
number is given by fo = fi =1 and for n > 1, f,, = fn—1 + fn—2. This is recurrence relation
for the sequence of Fibonacci numbers.

Example 8.45. Each of the following are recurrence relations.

t, = n-thp_1+4-t,_3

™h = Tpi+ 1

anp = Qp1+2-ap,-20+3-an_3+4-a,_4
Pn = DPn-1'Pn-2

Sn = Sp_3-+ n? — 4n + 32

We have not given any initial conditions for these recurrence relations. Without initial con-
ditions, we cannot compute particular values. We also cannot solve the recurrence relation
uniquely.

Recurrence relations have 2 types of terms: recursive term(s) and the non-recursive terms. In
the previous example, the recursive term of s,, is s,_3 and the non-recursive term is n? — 4n + 32.

*Question 8.46. Consider the recurrence relations r, and a, from Example 8.45.

(a) What are the recursive terms of r,?

Answer

(b) What are the non-recursive terms of r,?

Answer

(c) What are the recursive terms of a,,?

Answer

(d) What are the non-recursive terms of a,?

Answer

In computer science, the most common place we use recurrence relations is to analyze recursive
algorithms. We won’t get too technical yet, but let’s see a simple example.

3You might also see recurrence relations written using function notation, like a(n). Although there are technical
differences between these notations, you can think of them as being essentially equivalent in this context.
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Example 8.47. How many multiplications are required to compute n! using the factorial
algorithm given in Example 8.31 (repeated below)?

int factorial(int n) {

if (n<=0) {
return 1;
} else {
return n*xfactorial(n-1);
}
}
Solution: Let M, be the number of multiplications needed to compute n/!

using the factorial algorithm from Example 8.31. From the code, it is obvious
that My = 0. If n > 0, the algorithm uses one multiplication and then makes a
recursive call to factorial(n-1). By the way we defined M,,, factorial(n-1)
does M,,_1 multiplications. Therefore, M,, = M, _1 + 1.

So the recurrence relation for the number of multiplications is

0 if n=0
M"_{Mn—1+1 if n> 0.

Given a recurrence relation for a,, you can’t just plug in n and get an answer. For instance,
if a, = n-ap_1, and a; = 1, what is a109? The only obvious way to compute it is to compute
as,as,...,agg, and then finally a199. That is the reason why solving recurrence relations is so

important. As mentioned previously, solving a recurrence relation simply means finding a closed
form expression for it.

Example 8.48. It is not too difficult to see that the recurrence from Example 8.47 has the
solution M,, = n. To prove it, notice that with this assumption, M, +1=(n—1)+1 =
n = M, so the solution is consistent with the recurrence relation.

We can also prove it with induction: We know that My = 0, so the base case of k = 0 is
true. Assume M, =k for k£ > 0. Then we have

Mgy1 =My +1=Fk+1,
so the formula is correct for k + 1. Thus, by PMI, the formula is correct for all k > 0.

The last example demonstrates an important fact about recurrence relations used to analyze
algorithms. The recursive terms come from when a recursive function calls itself. The non-

recursive terms come from the other work that is done by the function, including any splitting or
combining of data that must be done.
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Example 8.49. Consider the recursive binary search algorithm we saw in Example 8.37:

int binarySearch(int[] a, int left, int right, int val) {
if (right>=1left) {
int middle = (left+right)/2;
if (val==a[middle])
return middle;
else if(val<al[middle])
return binarySearch(a,left,middle-1,val);
else
return binarySearch(a,middle+1,right,val);
} else {
return -1;
}
}

Find a recurrence relation for the worst-case complexity of binarySearch.

Solution: Let T,, be the complexity of binarySearch for an array of size n.
Notice that the only things done in the algorithm are to find the middle element,
make a few comparisons, perhaps make a recursive call, and return a value. Aside
from the recursive call, the amount of work done is constant, which we will just
call 1 operation. Notice that at most one recursive call is made, and that the array
passed in is half the size. Therefore T}, = T}, + 1.% If we want a base case, we
can use Ty = 1 since the algorithm will simply return —1 for an empty array, and
that clearly takes constant time. We’ll see how to solve this recurrence shortly.

“Technically, the recurrence relation is T, = 7|, 2] + 1 since n/2 might not be an integer. It turns out that
most of the time we can ignore the floors/ceilings and still obtain the correct answer.

We will discuss using recurrence relations to analyze recursive algorithms in more detail in
section 8.4. But first we will discuss how to solve recurrence relations. There is no general method
to solve recurrences. There are many strategies, however. In the next few sections we will discuss
four common techniques: the substitution method, the iteration method, the Master Theorem (or
Master Method), and the characteristic equation method for linear recurrences.

*Question 8.50. Let’s see if you have been paying attention. What does it mean to solve a
recurrence relation?

Answer

As we continue our discussion of recurrence relations, you will notice that we will begin to
sometimes use the function notation (e.g. 7'(n) instead of T;,). We do this for several reasons.
The first is so that you are comfortable with either notation. The second is that in algorithm
analysis, this notation seems to be more common, at least in my experience.

8.3.1 Substitution Method

The substitution method might be better called the guess and prove it by induction method.
Why? Because to use it, you first have to figure out what you think the solution is, and then you
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need to actually prove it. Because of the close tie between recurrence relations and induction, it
is the most natural technique to use. Let’s see an example.

Example 8.51. Consider the recurrence

S(n) = 1 when n =1
| S(n—1)+n otherwise

1
Prove that the solution is S(n) = @

Proof: Whenn=1,5(1)=1= w Assume that S(k —1) = @ Then

S(k) = S(k—1)+k (Definition of S(k))

= w + k (Inductive hypothesis)

k2 —k -

= 5 + k (The rest is just algebra)

k2 — k4 2k
2
k*+ k
2

k(k+1)
-

By PMI, S(n) = @ for all n > 1. O

xExercise 8.52. Recall that in Example 8.49, we developed the recurrence relation T'(n) =
T(n/2)+1,T(0) =1 for the complexity of binarySearch. For technical reasons, ignore T'(0)
and assume T'(1) = 1 is the base case. Use substitution to prove that T'(n) =logsn + 1 is a
solution to this recurrence relation.
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Example 8.53. Solve the recurrence

I — 1 when n =1
") 2H,_; +1 otherwise

Proof: Notice that H1 =1, Hp =2-1+1 =3, H3 =2-34+1 =7, and
Hy=2-74+1=15. It sure looks like H,, = 2" — 1, but now we need to prove it.
Since H; = 1 = 2! — 1, we have our base case of n = 1. Assume H, = 2" — 1.

Then
Hn+l = 2Hn + 1
22" —-1)+1
= ontl
and the result follows by induction. O

+xExercise 8.54. Solve the following recurrence relation and use induction to prove your
solution is correct: A(n) = A(n —1) + 2, A(1) = 2.
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Example 8.55. Why was the recursive algorithm to compute f,, from Example 8.39 so bad?

Solution: Let’s count the number of additions FibR(n) computes since that is
the main thing that the algorithm does.” Let F'(n) be the number of additions re-
quired to compute f, using FibR(n). Since FibR(n) calls FibR(n-1) and FibR (n-2)
and then performs one addition, it is easy to see that

Fn)=F(n—-1)+F(n—-2)+1,

where F(0) = F(1) = 0 is clear from the algorithm. We could use the method for
linear recurrences that will be outlined later to solve this, but the algebra gets a
bit messy. Instead, Let’s see if we can figure it out by computing some values.

F(0) = 0

F(1) = 0

F2) = F1)+F0)+1=1
F(3) = F) +F(1)+1=2
F(4) = FB)+F@2) +1=4
F(5) = FA) +F@3)+1=
F6) = F()+F(4)+1=12
F(7) = F(6)+F(5)+1=20

No pattern is evident unless you add one to each of these. If you do, you will get
1,1,2,3,5,8,13, 21, etc., which looks a lot like the Fibonacci sequence starting with
f1- Soit appears F'(n) = fn,+1—1. To verify this, first notice that F(0) =0 = f;—1
and F(1) = 0= fo — 1. Assume it holds for all values less than k. Then

F(k) = F(k—1)+F(k—2)+1
= fo—1+fem1—1+1
= fk+fe-1—-1
= fkt1 -1

The result follows by induction.

So what does this mean? It means in order to compute f,, FibR(n) performs
fne1 + 1 additions. In other words, it computes f,, by adding a bunch of 0s and
1s, which doesn’t seem very efficient. Since f,, grows exponentially (we’ll see this
in Example 8.80), then F'(n) does as well. That pretty much explains what is
wrong with the recursive algorithm.

?Alternatively, we could count the number of recursive calls made. This is reasonable since the amount of
work done by the algorithm, aside from the recursive calls, is constant. Therefore, the time it takes to compute
frn is proportional to the number of recursive calls made. This would produce a slightly different answer, but
they would be comparable.
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8.3.2 Iteration Method

With the iteration method (sometimes called backward substitution, we expand the recurrence
and express it as a summation dependent only on n and initial conditions. Then we evaluate the
summation. Sometimes the closed form of the sum is obvious as we are iterating (so no actual
summation appears in our work), while at other times it is not (in which case we do end up with
an actual summation).

Our first example perhaps has too many steps of algebra, but it never hurts to be extra careful
when doing so much algebra. We also don’t provide a whole lot of justification or explanation for
the steps. We will do that in the next example. It is easier to see the overall idea of the iteration
method if we don’t interrupt it with comments. If this example does not make sense, come back
to it after reading the next example.

Example 8.56. Solve the recurrence

R(n) = 1 when n =1
n= 2R(n/2) +n/2 otherwise

Proof: We have

R(n) = 2R(n/2)+n/2
= 2(2R(n/4) +n/4)+n/2
= 22R(n/4) +n/2 +n/2
=22R(n/4) +n
= 2%(2R(n/8) +n/8) +n
=23R(n/8) +n/2+n
= 23R(n/8) + 3n/2
= 23(2R(n/16) +n/16) + 3n/2
= 2'R(n/16) +n/2 + 3n/2
= 21R(n/16) + 2n

= 28R(n/(2F)) + kn/2

212" R(n/(2/°62")) + (logy n)n/2
nR(n/n) + (logyn)n/2

nR(1) + (logyn)n/2

= n+ (logyn)n/2

0

Using this method requires a little abstract thinking and pattern recognition. It also requires
good algebra skills. Care must be taken when doing algebra, especially with the non-recursive
terms. Sometimes you should add/multiply (depending on context) them all together, and other
times you should leave them as is. The problem is that it takes experience (i.e. practice) to
determine which one is better in a given situation. The key is flexibility. If you try doing it one
way and don’t see a pattern, try another way.
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Here is my suggestion for using this method

1. Iterate enough times so you are certain of what the pattern is. Typically this means at least
3 or 4 iterations.

2. As you iterate, make adjustments to your algebra as necessary so you can see the pattern.
For instance, whether you write 23 or 8 can make a difference in seeing the pattern.

3. Once you see the pattern, generalize it, writing what it should look like after k iterations.
4. Determine the value of k£ that will get you to the base case, and then plug it in.

5. Simplify.

*Question 8.57. The iteration method is probably not a good choice to solve the following
recurrence relation. Explain why.

Tn)=T(n—1)+3T(n—2)+n*T(n/3)+n? T(1)=17

Answer

Here is an example that contains more of an explanation of the technique.

Example 8.58. Solve the recurrence relation T'(n) = 27'(n/2) + n3, T(1) = 1.

Solution: We start by backward substitution:

T(n) = 2T(n/2) +n?
= 2[2T(n/4) + (n/2)%] + n®
= 2[2T(n/4) +n®/8)] + n®
= 2°T(n/4) +n®/4+n®

Notice that in the second line we have (n,/2)? and not n3. This may be more clear
if rewrite the formula using k: T'(k) = 2T(k/2) + k3. When applying the formula
to T'(n/2), we have k = n/2, so we get

T(n/2) = 2T((n/2)/2) + (n/2)® = 2T (n/4) + n3/8.

Back to the second line, also notice that the 2 is multiplied by both the 27'(n/4)
and the (n/2)? terms. A common error is to lose one of the 2s on the T'(n/4) term
or miss it on the (n/2)% term when simplifying. Also, (n/2)3 = n3/8, not n?/2.
This is another common mistake. Continuing,
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T(n) = ...
= 22T(n/4) + n3/4 + nd

= 22T(n/8) + (/4] + n®/4 +n®
= 22[2T(n/8) + n3/43] + n3/4 +n?
= 25T (n/8) +n3/4% + n3/4 + nd.

By now you should have noticed that I use 2 or more steps for every iteration—I do
one substitution and then simplify it before moving on to the next substitution.
This helps to ensure I don’t make algebra mistakes and that I can write it out in
a way that helps me see a pattern.

Next, notice that we can write the last line as
28T (n/2%) + n3/4% + n3 /4> + n3/4°,

so it appears that we can generalize this to
k=1 ‘
28T (n/2%) + Z n3 /4",
i=0

The sum starts at ¢ = 0 (not 1) and goes to k — 1 (not k). It is easy to get either
(or both) of these wrong if you aren’t careful. We should be careful to make sure
we have seen the correct pattern. Too often I have seen students make a pattern
out of 2 iterations. Not only is this not enough iterations to be sure of anything,
the pattern they usually come up with only holds for the last iteration they did.
The pattern has to match every iteration. To be safe, go one more iteration after
you identify the pattern to verify that it is correct.

Continuing (with a few more steps shown to make all of the algebra as clear as
possible), we get

T(n) = ...
= 25T(n/23) 4+ n3/4% 4 n3/4' 4 n3/4°
= 2827 (n/2%) 4+ (n/23)3] + n3/4% + n3 /4" + n3/4°
= 2°[2T(n/2%) + n?®/2°) + n?/4% + n3/4' 4+ n3/4°
= 2'T(n/2%) + n?/28 + n?/4% + n?® /4 4+ n3/4°
= 2'T(n/2%) + n?®/4% + n3/4® + n?®/4" +n3/4°

k—1

= 2kT(n/2%) + Zn3/4i.
=0

Notice that this does seem to match the pattern we saw above. We can evaluate
the sum to simplify it a little more:
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= 2*T(n/2%) + kz_:ln?’/éli

k—1
= 2"T(n/2") +n> " 1/4°
=0

= 2"T(n/2%) +n? %(1/4)"
=0

_ k
= 26T7(n/2%) + n? (711 _(11//44) )

— 2FT(n/2%) + nd(4/3)(1 — (1/4)F)

We are almost done. We just need to find a k that allows us to get rid of the
recursion. Thus, we need to determine what value of k makes T'(n/2%) = T(1) = 1.
In other words, we need k such that

n/2k =1.

This is equivalent to

n = 2k,

Taking log (base 2) of both sides, we obtain
logy . = logy(2F) = klog, 2 = k.

So k = logyn. We plug in k and use the fact that 2'°2” = n along with the
exponent rules to obtain

T(n) = ...
= 2"T(n/2%) +n*(4/3)(1 - (1/4)%)
= 928 ) (431 — (1/4)°%2")

_ T()+n(4/3)( w;ogzn)
= n-1+n%4/3) 1‘@)

= n+n®4/3) (1 = %)

P

= n -n" —=n

3 3
4 1

= gn?’—gn

So we have that T'(n) = gn® — in.
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*xExercise 8.59. Use iteration to solve the recurrence

1 when n =1
H(n) = { 2H(n — 1)+ 1 otherwise
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Example 8.60. Give a tight bound for the recurrence T'(n) = T'(y/n) + 1, where T'(2) = 1.

Solution: We can see that

T(n) = T®Y?)+1
= T +1+41
= TY®) +14+1+1
= T(nl/zk) +k
If we can determine when n'/2" = 2, we can obtain a solution. Taking logs (base

2) on both sides, we get
logz(nl/Qk) = log, 2.

We apply the power-inside-a-log rule and the fact that logs 2 =1 to get
(1/2%)logyn = 1.
Multiplying both sides by 2* and flipping it around, we get
28 = logy .

Again taking logs, we get
k = log, log, n.
Therefore,

T(nl/2log2 R ") + log, logy 1

1/210g2 logg n

T(n)

= T(2) + logylogyn (since n = 2 by the way we chose k)

= 1+ log, logy n.

Therefore, T'(n) = 1 + log, log, n.
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+xExercise 8.61. Use iteration to solve the recurrence relation that we developed in Exam-
ple 8.49 for the complexity of binarySearch:

T(n)=T(n/2)+1,T(1) = 1.
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If you can do the following exercise correctly, then you have a firm grasp of the iteration
method and your algebra skills are superb. If you have difficulty, keep working at it and/or get
some assistance. I strongly recommend that you do your best to solve this one on your own.

xExercise 8.62. Solve the recurrence relation T'(n) = 27'(n — 1) +n, T(1) = 1. (Hint: You
will need the result from Exercise 8.16.)
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8.3.3 Master Theorem

We will omit the proof of the following theorem which is particularly useful for solving recurrence
relations that result from the analysis of certain types of recursive algorithms—especially divide-
and-conquer algorithms.

Theorem 8.63 (Master Theorem). Let T'(n) be a monotonically increasing function satisfying
T(n) = aT(n/b)+ f(n)
T(1) = ¢

where a > 1, b> 1, and ¢ > 0. If f(n) = 0(n?), where d > 0, then

O(n?) ifa < b?
T(n) =< O(nllogn) ifa=0b?
O(n'°& ) jifa > b?

Example 8.64. Use the Master Theorem to solve the recurrence
T(n)=4T(n/2) +n,T(1) = 1.

Solution: We have a = 4,b =2, and d = 1. Since 4 > 2!, T(n) = O(n'°824) =
O(n?) by the third case of the Master Theorem.

Example 8.65. Use the Master Theorem to solve the recurrence
T(n) = 4T (n/2) +n? T(1) = 1.

Solution: ~ We have a = 4,b = 2, and d = 2. Since 4 = 22, we have T'(n) =
O(n%logn) by the second case of the Master Theorem.

Example 8.66. Use the Master Theorem to solve the recurrence
T(n) = 4T(n/2) +n3 T(1) = 1.

Solution: Here, a = 4,b =2, and d = 3. Since 4 < 23, we have T'(n) = ©(n3)
by the first case of the Master Theorem.

Wow. That was easy.? But the ease of use of the Master Method comes with a cost. Well, two
actually. First, notice that we do not get an exact solution, but only an asymptotic bound on the
solution. Depending on the context, this may be good enough. If you need an exact numerical
solution, the Master Method will do you no good. But when analyzing algorithms, typically we
are more interested in the asymptotic behavior. In that case, it works great. Second, it only
works for recurrences that have the exact form T'(n) = aT'(n/b) + f(n). It won’t even work on
similar recurrence, such as T'(n) = T'(n/b) + T(n/c) + f(n).

4 Almost too easy.
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*xExercise 8.67. Use the Master Theorem to solve the recurrence

T(n) = 20(n/2) +1,T(1) = 1.

Example 8.68. Let’s redo one from a previous section. Use the Master Theorem to solve

the recurrence
1 when n =1

R(n) = { 2R(n/2) +n/2 otherwise

Solution:  Here, we have a = 2, b = 2, and d = 1. Since 2 = 2!, R(n) =
O(n'logn) = O(nlogn). Recall that in Example 8.56 we showed that R(n) =
n + (logy n)n/2. Since n + (logy n)n/2 = O(nlogn), our solution is consistent.

*xExercise 8.69. Use the Master Theorem to solve the recurrence

T(n) = 7T(n/2) + 15n%/4,T(1) = 1.

*Question 8.70. In the solution to the previous exercise, we stated that
aT(n) = @(nlogg 7)7 which is about @(nz.s)‘y

Why didn’t we just say ‘T'(n) = ©(nl°827) = ©(n28)’?

Answer
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*Exercise 8.71. We saw in Example 8.49 that the complexity of binary search is given by
the recurrence relation T'(n) = T'(n/2) + 1, T(0) = 1. Use the Master Theorem to solve this
recurrence.

8.3.4 Linear Recurrence Relations

Although in my mind linear recurrence relations are of the least importance of these four methods
for computer scientists, we will discuss them very briefly, both for completeness sake, and because
we can talk about the Fibonacci numbers again.

Definition 8.72. Let ¢1,co,...,cr be real constants and f : N — R a function. A recurrence
relation of the form

an = C1ap_1 + Coln_o + -+ + Cran_k + f(n) (8.1)

is called a linear recurrence relation (or linear difference equation). If f(n) = 0
(that is, there is no non-recursive term), we say that the equation is homogeneous, and
otherwise we say the equation is nonhomogeneous.

The order of the recurrence is the difference between the highest and the lowest subscripts.
Example 8.73. u, = u,_1 + 2 is of the first order, and u, = 9u,_4 + n® is of the fourth
order.

There is a general technique that can be used to solve linear homogeneous recurrence relations.

However, we will restrict our discussion to certain first and second order recurrences.
First Order Recurrences

In this section we will learn a technique to solve some first-order recurrences. We won’t go into
detail about why the technique works.

Procedure 8.74. Let f(n) be a polynomial and a # 1. Then the following technique can be
used to solve a first order linear recurrence relations of the form

Tn = an_1+ f(n).

1. First, ignore f(n). That is, solve the homogeneous recurrence T, = axp—1. This is
done as follows:

(a) ‘Raise the subscripts’, so x, = ax,—1 becomes z" = ax™ Y. This is called the
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characteristic equation.
(b) Canceling this gives r = a.
(¢) The solution to the homogeneous equation x, = ax,_1 will be of the form x, = Aa",

where A is a constant to be determined.

2. Assume that the solution to the original recurrence relation, x, = ax,—1 + f(n), is of
the form x, = Aa™ + g(n), where g is a polynomial of the same degree as f(n).

3. Plug in enough values to determine the correct constants for the coefficients of g(n).

This procedure is a bit abstract, so let’s just jump into seeing it in action.

Example 8.75. Let g = 7 and z,, = 2x,,_1,n > 1. Find a closed form for x,,.

Solution: Raising subscripts we have the characteristic equation 2" = 22"~ 1.
Canceling, x = 2. Thus we try a solution of the form z, = A2", were A is a
constant. But 7 = ¢ = A2° = A and so A = 7. The solution is thus x, = 7(2)".

Example 8.76. Let g =7 and z,, = 2,1 + 1,7 > 1. Find a closed form for x,,.

Solution: By raising the subscripts in the homogeneous equation we obtain
2" = 22" ! or £ = 2. A solution to the homogeneous equation will be of the
form z, = A(2)". Now f(n) = 1 is a polynomial of degree 0 (a constant) and
so the general solution should have the form z, = A2" + B. Now, 7 = ¢ =
A2° + B = A+ B. Also, 1 = 229+ 1 = 15 and so 15 = z; = 24 + B. Solving
the simultaneous equations

A+B=1,

2A + B =15,
Using these equations, we can see that A =7 — B and B = 15 — 2A. Plugging
the latter into the former, we have A = 7 — (15 — 2A) = —8 + 24, or A = 8.

Plugging this back into either equation, we can see that B = —1. So the solution
is z, = 8(2") —1 =273 — 1,

xExercise 8.77. Let zg = 2,2, = 92,1 — 56n 4+ 63. Find a closed form for this recurrence.
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Second Order Recurrences

Let us now briefly examine how to solve some second order recursions.

Procedure 8.78. Here is how to solve a second-order homogeneous linear recurrence rela-
tions of the form
Ty = QLp—1 + bxyp_a.

1. Find the characteristic equation by “raising the subscripts.” We obtain z" = az™ ' +
b2,

2

2. Canceling this gives x* — ax — b = 0. This equation has two roots r1 and ro.

3. If the roots are different, the solution will be of the form x, = A(r1)" + B(r2)", where
A, B are constants.

4. If the roots are identical, the solution will be of the form x, = A(r1)" + Bn(r1)".

Example 8.79. Let 9 = 1,21 = —1, 212 + dxpt1 + 62, = 0.

Solution: The characteristic equation is #2452+ 6 = (2 +3)(z +2) = 0. Thus
we test a solution of the form z, = A(—2)" + B(—3)". Since 1 = 29 = A + B,
and —1 = —2A — 3B, we quickly find A = 2, and B = —1. Thus the solution is
Ty = 2(=2)" — (=3)™.
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Example 8.80. Find a closed form for the Fibonacci recurrence fo =0, f1 =1, f, = fn_1 +
f n—2-

Solution: The characteristic equation is f2 — f — 1 = 0. This has roots #
Therefore, a solution will have the form

fn:A<1+\/5)"+B<1—\/5)"'

2 2

The initial conditions give

0=A+ B, and
1-— 1
1 oa(EYY g (=YY L g+ Y am = L aop).
2 2 2 2 2
B th t ations, we obtain A 1 B 1 We thus have
rom these two equ , W =—,B=—. Vi
a V5 /5
)
"5 2 N 2 '

xExercise 8.81. Find a closed form for the recurrence zog = 1,21 = 4,2, = 4Tp_1 — 4Tp_o.




Analyzing Recursive Algorithms 311

8.4 Analyzing Recursive Algorithms

In Section 8.3 we already saw a few examples of analyzing recursive algorithms. We will provide
a few more examples in this section. In case it isn’t clear, the most common method to analyze
a recursive algorithm is to develop and solve a recurrence relation for its running time. Let’s see
some examples.

Example 8.82. What is the worst-case running time of Mergesort?

Solution: The algorithm for Mergesort is below. Let T'(n) be the worst-case
running time of Mergesort on an array of size n = right — left. Recall that
Merge takes two sorted arrays and merges them into one sorted array in time
©(n), where n is the number of elements in both arrays.* Since the two recursive
calls to Mergesort are on arrays of half the size, they each require time T'(n/2)
in the worst-case. The other operations take constant time. Below we annotate
the Mergesort algorithm with these running times.

Algorithm Time required
Mergesort (int[] A,int left,int right) { T(n)
if (left < right) { Ch
int mid = (left + right)/2; Co
Mergesort (A, left, mid); T(n/2)
Mergesort (A, mid + 1, right); T(n/2)
Merge(A, left, mid, right); O(n) < Csn
}
}

Given this, we can see that

T(n) = C1+Ce+T(n/2)+T(n/2)+0O(n)
2T(n/2) + ©(n).

Notice that we absorbed the constants C; and Cy into the ©(n) term. For sim-
plicity, we will also replace the ©(n) term with ¢n (where ¢ is a constant) and

rewrite this as
T(n) =2T(n/2) + cn.

We could use the Master Theorem to prove that T'(n) = O(n logn), but that would
be too easy. Instead, we will use induction to prove that 7'(n) = O(nlogn), and
leave the (2-bound to the reader.

By definition, T'(n) = O(nlogn) if and only if there exists constants k and ng
such that T'(n) < knlogn for all n > nyg.

For the base case, notice that 7'(2) = a for some constant a, and a < k2log2 = 2k
as long as we pick k > a/2. Now, assume that T'(n/2) < k(n/2)log(n/2). Then
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=
&,
I

2T (n/2) + cn
2(k(n/2)log(n/2) + cn
knlog(n/2) + cn
knlogn — knlog2 + cn
knlogn + (c — k)n
knlogn if k> c

IN

IN

As long as we pick k = max{a/2, ¢}, we have T'(n) < knlogn, soT(n) = O(nlogn)
as desired.

“Since our goal here is to analyze the algorithm, we won’t provide a detailed implementation of Merge. All
we need to know is its complexity.

*Exercise 8.83. We stated in the previous example that we could use the Master Theorem
to prove that if T'(n) = 2T'(n/2) + cn, then T'(n) = ©(nlogn). Verify this.

*Question 8.84. Answer the following questions about points that were made in Exam-
ple 8.82.

(a) Why were we allowed to absorb the constants Cy and Cs into the ©(n) term?

Answer

(b) Why were we able to replace the ©(n) term with cn?

Answer
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Example 8.85 (Towers of Hanoi). The following legend is attributed to French mathemati-
cian Edouard Lucas in 1883. In an Indian temple there are 64 gold disks resting on three
pegs. At the beginning of time, God placed these disks on the first peg and ordained that a
group of priests should transfer them to the third peg according to the following rules:

1. The disks are initially stacked on peg A, in decreasing order (from bottom to top).

2. The disks must be moved to another peg in such a way that only one disk is moved at
a time and without stacking a larger disk onto a smaller disk.

When they finish, the Tower will crumble and the world will end. How many moves does it
take to solve the Towers of Hanoi problem with n disks?

Solution: The usual (and best) algorithm to solve the Towers of Hanoi is:

e Move the top n — 1 disk to from peg 1 to peg 2.
e Move the last disk from peg 1 to peg 3.
e Move the top n — 1 disks from peg 2 to peg 3.

The only question is how to move the top n — 1 disks. The answer is simple: use
recursion but switch the peg numbers. Here is an implementation of this idea:

void solveHanoi(int N,int source,int dest,int spare) {
if (N==1) {
moveDisk(source,dest) ;
} else {
solveHanoi(N-1,source,spare,dest);
moveDisk(source,dest) ;
solveHanoi(N-1, spare,dest, source) ;

}

Don’t worry if you don’t see why this algorithm works. Our main concern here is
analyzing the algorithm.

The exact details of moveDisk depend on how the pegs/disks are implemented,
so we won’t provide an implementation of it. But it doesn’t actually matter
anyway since we just need to count the number of times moveDisk is called. As
it turns out, any reasonable implementation of moveDisk will take constant time,
so the complexity of the algorithm is essentially the same as the number of calls
to moveDisk.

Let H(n) be the number of moves it takes to solve the Towers of Hanoi problem
with n disks. Then H(n) is the number of times moveDisk is called when running
solveHanoi(n,1,2,3). It should be clear that H(1) = 1 since the algorithm
simply makes a single call to moveDisk and quits. When n > 1, the algorithm
makes two calls to solveHanoi with the first parameter being n — 1 and one call
to moveDisk. Therefore, we can see that
H(n)=2H(n—1)+ 1.

As with the first example, we want a closed form for H(n). But we already showed
that H(n) = 2" — 1 in Examples 8.53 and 8.59.
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xExercise 8.86. Let T'(n) be the complexity of blarg(n). Give a recurrence relation for
T(n).
int blarg(int n) {

if (n>5) {
return blarg(n-1)+blarg(n-1)+blarg(n-5)+blarg(sqrt(n));

}
else {
return n;
}
}
Answer

*Exercise 8.87. Give a recurrence relation for the running time of stoogeSort(A,0,n-1).
(Hint: Start by letting 7'(n) be the running time of stoogeSort on an array of size n.)

void stoogeSort(int[] A,int L,int R){

if (R<=L) return; // Array has at most one element

if (A[RI<A[L]) { // Swap first and last element
Swap(A,L,R); // if they are out of order

}

if (R-L>1){ // If the list has at least 2 elements
int third=(R-L+1)/3;
stoogeSort(A,L,R-third); // Sort first two-thirds
stoogeSort(A,L+third,R); // Sort last two-thirds
stoogeSort(A,L,R-third); // Sort first two-thirds again

Answer

*Exercise 8.88. Solve the recurrence relation you developed for StoogeSort in the previous
exercise. (Make sure you verify your solution to the previous problem before you attempt to
solve your recurrence relation).
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*Question 8.89. Which sorting algorithm is faster, Mergesort or StoogeSort? Justify your
answer.

Answer

*xExercise 8.90. Give and solve a recurrence relation for an algorithm that does as follows:
The algorithm is given an input array of size n. If n < 3, the algorithm does nothing. If
n > 3, create 5 separate arrays, each one-third of the size of the original array. This takes
O(n) to accomplish. Then call the same algorithm on each of the 5 arrays.

8.4.1 Analyzing Quicksort

In this section we give a proof that the average case running time of randomized quicksort is
©(nlogn). This proof gets its own section because the analysis is fairly involved. This proof
is based on the one presented in Section 8.4 of the classic Introduction to Algorithms by Cor-
men, Leiserson, and Rivest. The algorithm they give is slightly different, and they include some
interesting insights, so read their proof/discussion if you get a chance.

There are several slight variations of the quicksort algorithm, and although the exact running
times are different for each, the asymptotic running times are all the same. Below is the version
of Quicksort we will analyze.

Example 8.91. Here is one implementation of Quicksort:
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Quicksort(int A[],int 1,int r)
{
if (r > 1) {
int p = RPartition(A,l,r);
Quicksort(A,l,p-1);
Quicksort(A,p+l,r);
}

Chapter 8

int RPartition(int A[],int 1,int r)

{

}

int piv=1+(rand()%(r-1+1));
swap(A,l,piv);
int i = 1+1;
int j = r;
while (1) {
while (A[i] <= A[1l] && i<r)
i++;
while (A[j]1 >= A[1] && j>1)
Jj==s
if (i >= j) {
swap(A,j,1);
return j;
}
else swap(A,i,j);
}

We will base our analysis on this version of Quicksort. It is straightforward to see that the
runtime of RPartition is ©(n) (Problem 8.11 asks you to prove this). We start by developing a
recurrence relation for the average case runtime of Quicksort.

Theorem 8.92. Let T'(n) be the average case runtime of Quicksort on an array of size n.

Then
T(n) =

Proof:

i S T(k) + O(n).

Since the pivot element is chosen randomly, it is equally likely that the

pivot will end up at any position from [ to r. That is, the probability that the pivot
ends up at location 1+ i is 1/n for each i =0,...,r — 1. If we average over all of

the possible pivot locations, we obtain

n

n—1
Tm) = X (Z (T(k) + T(n — & — 1))) +0n)

k=0

1 n—1
= - A
k=0

+%ZT(n—k—1)+@(n)
k=0

1 n—1 1 n—1
= =Y T(k)+=> T(k)+6O(n)
=0 =0

2 n—1
= - Z T(k)+©(n)
k=0

92 n—1
= =Y Tk +6(n).
k=1

The last step holds since T(0) = 0.

We will need the following result in order to solve the recurrence relation.
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Lemma 8.93. For any n > 3,

n—1

1
Zk‘logk< —n?logn — =n?.
k=2 8

Proof: We can write the sum as

[n/2]-1

Zklogk— Z klog k + Z klog k

k=[n/2]

Then we can bound (klogk) by (klog(n/2)) = k(logn — 1) in the first sum, and
by (klogn) in the second sum. This gives

n—1 [n/2]-1
> klogk = Z klogk + Z klog k
k=2 k=[n/2]
[n/2]-1 n—1
< Z k(logn — 1) + Z klogn
k=2 k=[n/2]
[n/2]-1
= (logn—1) Z k+ logn Z k
k=[n/2]
[n/2]-1 [n/2]-1
= logn Z k— Z k + logn Z k
k=[n/2]
n—1 [n/2]-1
= lognZk— Z
k=2
n—1 [n/2]—1
< lognd k— > k
k=1 k=1
1 1 n n
< (logn)z(n—1)n—5(5 -1)3
1, n 1,
= 3" logn 2logn 8n +4
1 n2 Ly
< 3" logn—gn
The last step holds since
E<Elogn
4 = 2 ’

when n > 3. O
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Now we are ready for the final analysis.

Theorem 8.94. Let T'(n) be the average case runtime of Quicksort on an array of size n.
Then
T(n) = O(nlogn).

Proof:  We need to show that T'(n) = O(nlogn) and T(n) = Q(nlogn). To
prove that T'(n) = O(nlogn), we will show that for some constant a,

T(n) <anlogn for alln>2.°

When n = 2,
anlogn = a2log 2 = 2a,

and a can be chosen large enough so that T'(2) < 2a. Thus, the inequality holds
for the base case. Let T(1) = C, for some constant C. For 2 < k < n, assume
T(k) < aklogk. Then

n—1

T(n) = 23 T(k)+6)

k=1

2 ' 2
= aklogk+ =T(1) + O(n) (by assumption)
n i n

IN

2a 2
= — Z klogk+ —C + ©(n)
n = n

IN

92 n—1
—aZklogk+C+@(n) (since 2 < 1)
" =2

IN

2a (1 1
= (§n2 logn — §n2) +C+0O(n) (by Lemma 2)
n

= anlogn — %n+0+@(n)

= anlogn + (@(n) +C— %n)

< anlogn (choose a so ©(n) 4+ C < §n)

We have shown that with an appropriate choice of a, T'(n) < anlogn for alln > 2,
so T'(n) = O(nlogn).
We leave it to the reader to show that T'(n) = Q(nlogn). O

“We pick 2 for the base case since nlogn=0 if n = 1, so we cannot make the inequality hold. Another
solution would be to show that T'(n) < anlogn + b. In this case, b can be chosen so that the inequality holds
for n = 1.
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8.5 Problems

n?(n+1)2

n
Problem 8.1. Use induction to prove that Z K = for all n > 1.

k=1

Problem 8.2. Use induction to prove that for all n > 2,

2"21_1+1+1++1 n-1
Z(k-Dk 1-2 2.3 3-4 (n—1)-n n °

Problem 8.3. Prove that for all positive integers n, fZ -+ f2 +- -+ f2 = fnfns1, where f, is the
nth Fibonacci number.

Problem 8.4. Prove that the number of binary palindromes of length 2k +1 (odd length) is 2¥+1
for all £ > 0.

Problem 8.5. Explain why the following joke never ends: Pete and Repete got in a boat. Pete
fell off. Who's left?.

Problem 8.6. Prove that the FibR(n) algorithm from Example 8.39 correctly computes f,.
(Hint: Use induction. How many base cases do you need? Do you need weak or strong induction?)

Problem 8.7. In Example 8.80 we gave a solution to the recurrence f,, = fn—1 4+ fn_2, fo =0,
fi = 1. Use the substitution method to re-prove this. (Hint: Recall that the roots to the
polynomial 22 —x — 1 = 0 are Li/g This is equivalent to 2 = 2 + 1. You will find this helpful
in the inductive step of the proof.

Problem 8.8. Find and prove a solution for each of the following recurrence relations using two
different techniques (this will not only help you verify that your solutions are correct, but it will
also give you more practice using each of the techniques). At least one of the techniques must
yield an exact formula if possible.

(a) T(n)=T(n/2)+n? T(1) = 1.

(b) T(n) =T(n/2) +n, T(1) = 1.

(c) T(n) =2T(n/2) +n% T(1) = 1.

(d) T(n)=T(n—1)-T(n—2), T(0) =1, T(1) = 2.
(e) T(n)=T(n—1)+n2 T()=1.

(f) T(n) =T(n—1)+2n, T(1) =2

ap = 3ap_1 + 2n, ap = 5.

)
)

(¢) ap = an—1+2ap_2, ap =2, a; = 5.
) an = 6a,_1 +9an—_2, ag =1, a; = 2.
)

ap = —ap_1 +6ap_2, ap =4, a; = 5.
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Problem 8.10. Use the Master Theorem to find a tight bound for each of the following recurrence
relations.

Problem 8.11. Prove that the RPartition algorithm from Example 8.91 has complexity O(n).
Problem 8.12. Consider the classic bubble sort algorithm (see Example 7.113).

(a) Write a recursive version of the bubble sort algorithm. (Hint: The algorithm I have in mind
should contain one recursive call and one loop.)

(b) Let B(n) be the complexity of your recursive version of bubble sort. Give a recurrence relation
for B(n).

(¢) Solve the recurrence relation for B(n) that you developed in part (b).

(d) Is your recursive implementation better, worse, or the same as the iterative one given in
Example 7.1137 Justify your answer.

Problem 8.13. Consider the following algorithm (remeber that integer division truncates):

int halfIt(int n) {
if (n>0) {
return 1 + halfIt(n/2);
} else {
return O;
}
}

(a) What does halfIt(n) return? Your answer should be a function of n.

(b) Prove that the algorithm is correct. That is, prove that it returns the answer you gave in
part (a).

(c) What is the complexity of halfIt(n)? Give and prove an exact formula. (Hint: This will
probably involve developing and solving a recurrence relation.)

Problem 8.14. This problem involves an algorithm to compute the sum of the first n squares

n
(i.e. Z k:2> using recursion.

k=1
n
(a) Write an algorithm to compute Z k? that uses recursion and only uses the increment operator
k=1
for arithmetic (e.g., you cannot use addition or multiplication). (Hint: The algorithm I have
in mind has one recursive call and one or two loops.)
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(b) Let S(n) be the complexity of your algorithm from part (a). Give a recurrence relation for
S(n).

(¢) Solve the recurrence relation for S(n) that you developed in part (b).

(d) Give a recursive linear-time algorithm to solve this same problem (with no restrictions on
what operations you may use). Prove that the algorithm is linear.

(e) Give a constant-time algorithm to solve this same problem (with no restrictions on what you
may use). Prove that the algorithm is constant.

(f) Discuss the relative merits of the three algorithms. Which algorithm is best? Worst? Justify.

Problem 8.15. Assuming the priests can move one disk per second, that they started moving
disks 6000 years ago, and that the legend of the Towers of Hanoi is true, when will the world end?

Problem 8.16. Prove that the stoogeSort algorithm given in Exercise 8.87 correctly sorts an
array of n integers.
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Chapter 9

Counting

In this chapter we provide a very brief introduction to a field called combinatorics. We are
actually only going to scratch the surface of this very broad and deep subfield of mathematics
and theoretical computer science. We will focus on a subfield of combinatorics that is sometimes
called enumeration. That is, we will mostly concern ourselves with how to count things.

It turns out that combinatorial problems are notoriously deceptive. Sometimes they can seem
much harder than they are, and at other times they seem easier than they are. In fact, there are
many cases in which one combinatorial problem will be relatively easy to solve, but a very closely
related problem that seems almost identical will be very difficult to solve.

When solving combinatorial problems, you need to make sure you fully understand what is
being asked and make sure you are taking everything into account appropriately. I used to tell
students that combinatorics was easy. I don’t say that anymore. In some sense it is easy. But it
is also easy to make mistakes.

9.1 The Multiplication and Sum Rules

We begin our study of combinatorial methods with the following two fundamental principles. They
are both pretty intuitive. The only difficulty is realizing which one applies to a given situation.
If you have a good understanding of what you are counting, the choice is generally pretty clear.

Theorem 9.1 (Sum Rule). Let Ey1, Es, ..., Ey, be pairwise finite disjoint sets. Then
|E1UE2U---UE]€‘ = ‘El‘ +‘E2‘ +"'+‘Ek|.

Another way of putting the sum rule is this: If you have to accomplish some task and you
can do it in one of n1 ways, or one of no ways, etc., up to one of ni ways, and none of the
ways of doing the task on any of the list are the same, then there are ny + ng + - - - + ng ways
of doing the task.

Example 9.2. I have 5 brown shirts, 4 green shirts, 10 red shirts, and 3 blue shirts. How
many choices do I have if I intend to wear one shirt?

Solution:  Since each list of shirts is independent of the others, I can use the
sum rule. Therefore I can choose any of my 5 + 4 + 10 4+ 4 = 22 shirts.

323
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Example 9.3. How many ordered pairs of integers (z,y) are there such that 0 < |zy| < 57

Solution: Let Ey = {(v,y) € Z*? : |vy| = k} for k = 1,...,5. Then the desired
number is
|E1| 4 |Ea| + - - - + | Es|.

We can compute each of the these as follows:

E, = {(_17_1)’(_171)7(17_1)’(171)}

Ey, = {(_27_1)7(_27 1)7(_17_2)7(_172)7(17_2)7(172)7(27—1)7(27 1)}

E3 = {(_37_1)’(_37 1)7(_1’_3)7(_173)’(17_3)7(1’3)7(37_1)7(3’1)}

E, = {(_47_1)7(_47 1)7(_27_2)7(_272)7(_17_4)7(_174)7 17_4)7
(174)7 27_2)’(2’2)7(4’_1)’(47 )}

Es = {(-5,-1),(-5,1),(-1,-5),(-1,5),(1,-5),(1,5), (5,-1),(5,1)}

(
The desired number is therefore 4 + 8 +8 + 12 + & = 40.

*Exercise 9.4. For dessert you can have cake, ice cream or fruit. There are 3 kinds of cake,
8 kinds of ice cream and 5 different of fruits. How many choices do you have for dessert?

Answer

Theorem 9.5 (Product Rule). Let Ey, Es, ..., Ey, be finite sets. Then
‘El XE2 X oo X Ek‘ = ‘El‘ o |E2|‘Ek|

Another way of putting the product rule is this: If you need to accomplish some task that
takes k steps, and there are nq ways of accomplishing the first step, ny ways of accomplishing
the second step, etc., and ni ways of accomplishing the kth step, then there are ning - - - ny
ways of accomplishing the task.

Example 9.6. I have 5 pairs of socks, 10 pairs of shorts, and 8 t-shirts. How many choices
do I have if I intend to wear one of each?

Solution: I can think of choosing what to wear as a task broken into 3 steps:
I have to choose a pair of socks (5 ways), a pair of shorts (10 ways), and finally a
t-shirt (8 ways). Thus I have 5 x 10 x 8 = 400 choices.

+xExercise 9.7. If license plates are required to have 3 letters followed by 3 digits, how many
license plates are possible?

Answer
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Example 9.8. The positive divisors of 400 are written in increasing order
1,2,4,5,8,...,200,400.

How many integers are there in this sequence? How many of the divisors of 400 are perfect

squares?

Solution: Since 400 = 2% - 52, any positive divisor of 400 has the form 2¢5°
where 0 < a <4 and 0 < b < 2. Thus there are 5 choices for a and 3 choices for b
for a total of 5-3 = 15 positive divisors.

To be a perfect square, a positive divisor of 400 must be of the form 2*5° with
a € {0,2,4} and 8 € {0,2}. Thus there are 3-2 = 6 divisors of 400 which are also
perfect squares.

It is easy to generalize Example 9.8 to obtain the following theorem.

Theorem 9.9. Let the positive integer n have the prime factorization

a1, a2

ak
n=py Py - Pr,

where the p; are distinct primes, and the a; are integers > 1. If d(n) denotes the number of
positive divisors of n, then

d(n) = (a1 + 1)(&2 +1)--- (ak +1).

xExercise 9.10. Prove Theorem 9.9.
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*Question 9.11. Whether or not you realize it, you used the fact that the p; were distinct
primes in your proof of Theorem 9.9 (assuming you did the proof correctly). Explain where
that fact was used (perhaps implicitly).

Answer

Example 9.12. What is the value of sum after each of the following segments of code?

int sum=0; int sum=0;
for(int i=0;i<n;i++) { for(int i=0;i<n;i++) {
for(int i=0;i<m;i++) { sum = sum + 1;
sum = sum + 1; T
T for(int i=0;i<m;i++) {
} sum = sum + 1;
T
Solution: In the code on the left, the inner loop executes m times, so every

time the inner loop executes, sum gets m added to it. The outer loop executes n
times, each time calling the inner loop. Therefore m is added to sum n times, so
sum = n X m at the end.

In the code on the right, The first loop adds n to sum, and then the second loop
adds m to sum. Therefore, sum = n + m at the end.

The following problem can be solved using the product rule-you just need to figure out how.

xExercise 9.13. The number 3 can be expressed as a sum of one or more positive integers
in four ways, namely, as 3, 1 +2, 2+ 1, and 1+ 1 + 1. Show that any positive integer n can
be so expressed in 2" "1 ways.

Answer

Example 9.14. Each day I need to decide between wearing a t-shirt or a polo shirt. I have
50 t-shirts and 5 polo shirts. I also have to decide whether to where jeans, shorts, or slacks.
I have 5 pairs of jeans, 15 pairs of shorts, and 4 pairs of slacks. How many different choices
do I have when I am getting dressed?

Solution: I have 50 + 5 = 55 choices for a shirt and 5+ 15 + 4 = 24 choices or
pants. So the total number of choices if 55 - 24 = 1320.
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xExercise 9.15. If license plates are required to have 5 characters, each of which is either a
digits or a letter, how many license plates are possible?

Answer

xExercise 9.16. How many bit strings are there of length n?

Answer

Example 9.17. The integers from 1 to 1000 are written in succession. Find the sum of all
the digits.

Solution: When writing the integers from 000 to 999 (with three digits),
3 x 1000 = 3000 digits are used. Each of the 10 digits is used an equal number of
times, so each digit is used 300 times. The the sum of the digits in the interval
000 to 999 is thus

0+1+2+34+4+5+6+7+8+19) 300 = 13500.

Therefore, the sum of the digits when writing the integers from 1 to 1000 is
13500 + 1 = 13501.

xFill in the details 9.18. In C++, identifiers (e.g. variable and function names) can contain
only letters (upper and/or lower case), digits, and the underscore character. They may not
begin with a digit.®

(a) There are 26 4+ 26 + 1 = 53 possible identifiers that contain a single character.

(b) There are 53 - (26 + 26+ 10+ 1) = 53 - 63 = 3339 possible identifiers with two characters.

(c¢) There are possible identifiers that contain a three characters.
(d) There are possible identifiers that contain a four characters.
(e) There are possible identifiers that contain a k& characters.

“There are 84 reserved keywords that cannot be used, but we will ignore these for this exercise.
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9.2 Pigeonhole Principle

The following theorem seems so obvious that it doesn’t need to be stated. However, it often come
in handy in unexpected situations.

Theorem 9.19 (The Pigeonhole Principle). If n is a positive integer and n + 1 or more
objects are placed into n bozes, then one of the boxes contains at least two objects.

Notice that the pigeonhole principle is saying that this is true no matter how the objects are
places in the bozres. In other words, don’t assume that n — 1 boxes have one object and 1 box has
2 objects. It is possible that all n+ 1 objects are in the same box. But no matter how the objects
are distributed in the boxes, we can be sure that there is some box with at least two objects.

Example 9.20. In any group of 13 people, there are always two who have their birthday on
the same month. Similarly, if there are 32 people, at least two people were born on the same
day of the month.

xExercise 9.21. What can you say about the digits in a number that is 11 digits long?

Answer

The pigeonhole principle can be generalized.

Theorem 9.22 (The Generalized Pigeonhole Principle). If n objects are placed into k boxes,
then there is at least one box that contains at least [n/k] objects.

Proof:  Assume not. Then each of the k bozxes contains no more than [n/k] —1
objects. Notice that [n/k] < n/k+1 (convince yourself that this is always true).
Thus, the total number of objects in the k boxes is at most

kE([n/k] —1) <k(n/k+1-1)=n,

contradicting the fact that there are n objects in the boxes. Therefore, some box
contains at least [n/k| objects. O

The tricky part about using the pigeonhole principle is identifying the drawers and objects.
Once that is done, applying either form of the pigeonhole principle is straightforward. Actually,
often the trickiest thing is identifying that the pigeonhole principle even applies to the problem
you are trying to solve.

Example 9.23. A drawer contains an infinite supply of white, black, and blue socks. What
is the smallest number of socks you must take from the drawer in order to be guaranteed that
you have a matching pair?

Solution: Clearly I could grab one of each color, so three is not enough. But
according the the Pigeonhole Principle, if I take 4 socks, then I will get at least
[4/3] = 2 of the same color (the colors correspond to the boxes). So 4 socks will
guarantee a matched pair.

Notice that I showed two things in this proof. I showed that 4 socks was enough,
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but I also showed that 3 was not enough. This is important. For instance, 5 is
enough, but it isn’t the smallest number that works.

xExercise 9.24. An urn contains 28 blue marbles, 20 red marbles, 12 white marbles, 10
yellow marbles, and 8 magenta marbles. How many marbles must be drawn from the urn in
order to assure that there will be 15 marbles of the same color? Justify your answer.

Answer

*xExercise 9.25. You are in line to get tickets to a concert. Each person can get at most 4
tickets. There are only 100 tickets available. The girl behind you in line says “I sure hope
there are enough tickets for me. You're lucky, though. You will get as many as you want.”
What does she know, and under what circumstances will she get any tickets?

Answer

The pigeonhole principle is useful in existence proofs—that is, proofs that show that something
exists without actually identifying it concretely.

Example 9.26. Show that amongst any seven distinct positive integers not exceeding 126,
one can find two of them, say a and b, which satisfy

b<a<?2b
Solution:  Split the numbers {1,2,3,...,126} into the six sets
(1,2}, {3,4,5,6},{7.8,...,13,14}, {15, 16, ..., 29, 30},

{31,32,...,61,62} and {63,64,...,126}.

By the Pigeonhole Principle, two of the seven numbers must lie in one of the six
sets, and obviously, any such two will satisfy the stated inequality.
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Example 9.27. Given any 9 integers whose prime factors lie in the set {3,7,11} prove that
there must be two whose product is a square.

Solution: For an integer to be a square, all the exponents of its prime factori-
sation must be even. Any integer in the given set has a prime factorisation of the
form 3%7°11°¢. Now each triplet (a,b,c) has one of the following 8 parity patterns:
(even, even, even), (even, even, odd), (even, odd, even), (even, odd, odd), (odd,
even, even), (odd, even, odd), (odd, odd, even), (odd, odd, odd). In a group of 9
such integers, there must be two with the same parity patterns in the exponents.
Take these two. Their product is a square, since the sum of each corresponding
exponent will be even.

*Exercise 9.28. The nine entries of a 3 x 3 grid are filled with —1, 0, or 1. Prove that among
the eight resulting sums (three columns, three rows, or two diagonals) there will always be
two that add to the same number.

Answer

Example 9.29. Prove that if five points are taken on or inside a unit square, there must

V2

always be two whose distance is no more than -

Solution: Split the square into four congruent squares as shown to
the right. At least two of the points must fall into one of the smaller
squares. The longest distance between two points in one of the
smaller squares is, by the Pythagorean Theorem, (/(1)2+ ()2 =

V2

- Thus, the result holds.

Example 9.30. Given any set of ten natural numbers between 1 and 99 inclusive, prove that
there are two distinct nonempty subsets of the set with equal sums of their elements. (Hint:
How many possible subsets are there, and what are the possible sums of the elements within
the subsets?)

Solution: There are 2'°—1 = 1023 non-empty subsets that one can form with a
given 10-element set. To each of these subsets we associate the sum of its elements.
The minimum value that the sum can be for any subset is 1 +2 + --- + 10 = 55,
and the maximum value is 90 + 91 + - - - + 99 = 945. Since the number of possible
sums is no more than 945 — 55 + 1 = 891 < 1023, there must be at least two
different subsets that have the same sum.
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Example 9.31. Prove that if 55 of the integers from 1 to 100 are selected, then two of them
differ by 10.

Solution: First observe that if we choose n + 1 integers from any set of 2n
consecutive integers, there will always be some two that differ by n. This is
because we can pair the 2n consecutive integers

{a+1l,a4+2,a+3,...,a+2n}
into the n pairs
{a+1l,a+n+1}{a+2,a+n+2},....,{a+n,a+2n},

and if n 4+ 1 integers are chosen from this, there must be two that belong to the
same group.

So now group the one hundred integers as follows:
{1,2,...20},{21,22,...,40},

{41,42,...,60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, then we must have selected at least [55/5] = 11
from one of the groups. From that group, by the above observation (let n = 10),
there must be two that differ by 10.

xExercise 9.32. An eccentric old man has five cats. These cats have 16 kittens among
themselves. What is the largest integer n for which one can say that at least one of the five
cats has n kittens?

Answer

xEvaluate 9.33. Prove that at a party with at least two people, there are two people who
have shaken hands with the same number of people.

Proo# |: There are n —| people | person can shake hands with—4 others if
there are S people at the party. At one aiven time two people cannot
shake hands with O people and N —| people simuitaneocusly Because there are
4 slots to fill and S people therefore By the piceonhole principle at least
two people shake hands with the same Nnuweer of others.

Evaluation
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Proof 2. Assume that at a aathering of n > 2 people, there are no two
people who have shaken hands with the same numeer of people. £ there are
two people at the aathering they must either shake hands with each other
or shake hands with Nnorody. However, this contradicts the assumption
that NO two pecple have shaken hands with the same Nnumeer Of people.
Therefore, By contradiction, at a aathering of n > 2 people, there are at
least two people Who have shaken hands with the same Nnuweer Of people.

Evaluation

Proof 3: Assume that at a8 gathering of n > 2 people, there are Nno two
people Who have shaken hands with the same Nnuweer of people. Person n
shakes hands with N—| people Because you can't shake your own hand. Person
N — | then shakes hands with N — 2 people and so on.urttil you reach the last
person. He shakes hands with Nno one which fulfills the contradiction.

Evaluation

*Exercise 9.34. Give a correct proof of the problem stated in Evaluate 9.33.
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*Exercise 9.35. There are seventeen friends from high school that all keep in touch by
writing letters to each other.® To be clear, each person writes separate letters to each of the
others. In their letters only three different topics are discussed. Each pair only corresponds
about one of these topics. Prove that there at least three people who all write to each other
about the same topic.

“You do know what letters are, right? They are like e-mail, only they are written on paper, are sent to
just one person, and are delivered to your physical mail box.
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9.3 Permutations and Combinations

Most of the counting problems we will be dealing with can be classified into one of four categories.
The categories are determined by two factors: whether or not repetition is allowed and whether
or not order matters. After presenting a brief example of each of these categories, we will go into
more detail about each in the following four subsections.

Example 9.36. Consider the set {a,b, ¢, d}. Suppose we “select” two letters from these four.
Depending on our interpretation, we may obtain the following answers.

(a) Permutations with repetitions. The order of listing the letters is important, and
repetition is allowed. In this case there are 4 - 4 = 16 possible selections:

aa | ab | ac | ad
ba | bb | be | bd
ca | cb | cc|cd
da | db| dc| dd

(b) Permutations without repetitions. The order of listing the letters is important, and
repetition is not allowed. In this case there are 4 - 3 = 12 possible selections:

ab | ac | ad
ba bc | bd
ca | cb cd
da | db | dc

(¢) Combinations with repetitions. The order of listing the letters is not important, and

4-3
repetition s allowed. In this case there are 5 + 4 = 10 possible selections:

aa | ab | ac | ad
bb | be | bd

cc | cd

dd

(d) Combinations without repetitions. The order of listing the letters is not important,

e . 4-3 . .
and repetition is not allowed. In this case there are — = 6 possible selections:

ab | ac | ad
be | bd
cd

Although most of the simple types of counting problems we want to solve can be reduced
to one of these four, care must be taken. The previous example assumed that we had a set of
distinguishable objects. When objects are not distinguishable, the situation is a more complicated.

9.3.1 Permutations without Repetitions
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Definition 9.37. Let x1,x9,...,x, be n distinct objects. A permutation of these objects
18 simply a rearrangement of them.

Example 9.38. There are 24 permutations of the letters in M AT H, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM
HATM HAMT HTAM HTMA HMTA HMAT

*Exercise 9.39. List all of the permutations of FAT

Answer

Theorem 9.40. Let x1,x2,...,2x, be n distinct objects. Then there are n! permutations of
them.

Proof:  The first position can be chosen in n ways, the second object in n — 1
ways, the third in n — 2, etc. This gives

nn—1)(n-2)---2-1=nl
O

Example 9.41. Previously we saw that there are 24 = 4! permutations of the letters in
MATH and 6 = 3! permutations of the letters in FAT.

*Exercise 9.42. How many permutations are there of the letters in UNCOPY RIGHTABLE?

Answer

Let’s see some slightly more complicated examples.

Example 9.43. A bookshelf contains 5 German books, 7 Spanish books and 8 French books.
Each book is different from one another. How many different arrangements can be done of

these books if
(a) we put no restrictions on how they can be arranged?
(b) books of each language must be next to each other?
(c) all the French books must be next to each other?

)
)
)
)

(d) no two French books must be next to each other?
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Solution:

(a) We are permuting 5+ 7 + 8 = 20 objects. Thus the number of arrangements
sought is 20! = 2432902008176640000.

(b) “Glue” the books by language, this will assure that books of the same lan-
guage are together. We permute the 3 languages in 3! ways. We permute the
German books in 5! ways, the Spanish books in 7! ways and the French books
in 8! ways. Hence the total number of ways is 3!- 5! - 7!. 8! = 146313216000.

(c) Align the German books and the Spanish books first. Putting these 5+7 = 12
books creates 12 + 1 = 13 spaces (we count the space before the first book,
the spaces between books and the space after the last book). To assure that
all the French books are next each other, we “glue” them together and put
them in one of these spaces. Now, the French books can be permuted in 8!
ways and the non-French books can be permuted in 12! ways. Thus the total
number of permutations is

13- 8! 12! = 251073478656000.

(d) As with (c), we align the 12 German and Spanish books first, creating 13
spaces. To assure that no two French books are next to each other, we
put them into these spaces. The first French book can be put into any of
13 spaces, the second into any of 12 remaining spaces, etc., and the eighth
French book can be put into any 6 remaining spaces. Now, the non-French
books can be permuted in 12! ways. Thus the total number of permutations
is

13-12-11-10-9-8-7-6- 12! = 24856274386944000.

*Exercise 9.44. Telephone numbers in Land of the Flying Camels have 7 digits, and the
only digits available are {0,1,2,3,4,5,7,8}. No telephone number may begin in 0, 1 or 5.
Find the number of telephone numbers possible that meet the following criteria:

(a) You may not repeat any of the digits.

Answer

(b) You may not repeat the digits and the phone numbers must be odd.

Answer

The previous example and exercise should demonstrate that counting often requires thinking
about things in different ways depending on the exact situation. This can be tricky, and it is
very easy to make mistakes that lead to under or over counting possibilities. As you are solving
problems, think very carefully about what you are counting so you don’t fall into this trap.
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9.3.2 Permutations with Repetitions

We now consider permutations with repeated objects.

Example 9.45. In how many ways may the letters of the word
MASSACHUSETTS

be permuted to form different strings?

Solution: We put subscripts on the repeats forming
MA15152A20HU53ET1T254.

There are now 13 distinguishable objects, which can be permuted in 13! different
ways by Theorem 9.40. But this counts some arrangements multiple times since
in reality the duplicated letters are not distinguishable. Consider a single permu-
tation of all of the distinguishable letters. If I permute the letters Ay As, I get the
same permutation when ignoring the subscripts. The same thing is true of T775.
Similarly, there are 4! permutations of 51555554, so there are 4! permutations that
look the same (without the subscripts). Since I can do all of these independently,
there are 2!12!4! permutations that look identical when the subscripts are removed.

This is true of every permutation. Therefore, the actual number of permutations

. 13!

The following exercises should help the technique used in the previous example to sink in.

*Exercise 9.46. Use an argument similar to that in Example 9.45 to determine the number
of permutations in the letters in TALL.

Answer

*Exercise 9.47. List all of the permutations of the letters TALL.

Answer

xExercise 9.48. How many permutations are there in the letters of AEEEI?

Answer
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xExercise 9.49. List all of the permutations of the letters AEEFEI.

Answer

The arguments from the previous examples and exercises can be generalized to prove the
following.

Theorem 9.50. Let there be k types of objects: ny of type 1; ny of type 2; etc. Then the
number of ways in which these ny + ng + - - - + ny objects can be rearranged is

(n1+n2+---+nk)!

Example 9.51. How many permutations of the letters from M ASSACHUSETTS contain
MASS?

Solution: We can consider M ASS as one block along with the remaining 9
letters A, C, H, U, S, E, T, T, S. Thus, we are permuting 10 ‘letters’. There are
two S’s® and two T’s and so the total number of permutations sought is

10!

“Remember, the other two S’s are part of M ASS, which we are now treating as a single object.

*Exercise 9.52. How many permutations of the letters from the word ALGORITHMS
contain SMITH?

Answer

Example 9.53. In how many ways may we write the number 9 as the sum of three positive
integer summands? Here order counts, so, for example, 1 + 7 + 1 is to be regarded different
from 7+1+1.

Solution:  We need to find the values of a, b, and ¢ such that a +b+ ¢ = 9,
where a,b,c € ZT. We will consider triples (a,b,c) listed smallest to largest and




Permutations and Combinations 339

determine how many ways each triple can be reordered. The possibilities are:

(a,b,c) | Number of permutations
(1,1,7) | 3!/21 =3

(1,2,6) | 3! =6

(1,3,5) | 3'=6

(1,4,4) | 31/21 =3

(2,2,5) | 31/21 =3

(2,3,4) |3'=6

(3,3,3) | 3!/31 =1

Thus the number desired is3+6 +6+3+3+6+ 1= 28.

Example 9.54. In how many ways can the letters of the word MURMUR be arranged
without allowing two of the same letters next to each other?

Solution: If we started with, say , MU then the R could be arranged in one
of the following three ways:

(M|U|R| [R] |

(M|U|R| | [R]

(M|U| [R]| [R]

In the first case there are 2! = 2 ways of putting the remaining M and U, in the
second there are 2! = 2 ways and in the third there is only 1! way. Thus starting
the word with MU gives 2+ 2+ 1 = 5 possible arrangements. In the general case,
we can choose the first letter of the word in 3 ways, and the second in 2 ways.
Thus the number of ways sought is 3-2 -5 = 30.°

“Tt should be noted that this analysis worked because the three letters each occurred twice. If this was not
the case we would have had to work harder to solve the problem.
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*Exercise 9.55. Telephone numbers in Land of the Flying Camels have 7 digits, and the
only digits available are {0, 1,2,3,4,5,7,8}. No telephone number may begin with 0, 1 or 5.
Find the number of telephone numbers possible that meet the following criteria:

(a) You may repeat all digits.

Answer

(b) You may repeat digits, but the last digit must be even.

Answer

(¢) You may repeat digits, but the last digit must be odd.

Answer

Example 9.56. In how many ways can the letters of the word AFFECTION be arranged,
keeping the vowels in their natural order and not letting the two F’s come together?

9!
Solution: There are o ways of permuting the letters of AFFECTION.

The 4 vowels can be permuted in 4! ways, and in only one of these will they be
|

in their natural order. Thus there are 51 : 1 ways of permuting the letters of

AFFECTION in which their vowels keei). their natural order. If we treat FF

as a single letter, there are 8! ways of permuting the letters so that the F’s stay
8!

together. Hence there are ] permutations of AFFECTION where the vowels

occur in their natural order and the FF’s are together. In conclusion, the number
of permutations sought is

ol gl 8l (9 ) 7
2041 41 41\2 57605 2 o880
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9.3.3 Combinations without Repetitions

Let’s begin with some important notation.

Definition 9.57. Let n,k be non-negative integers with 0 < k < n. The binomial coeffi-
cient <Z> (read “n choose k”) is defined by

n\ n! n-(n-1)-(n—-2)---(n—k+1)
k] El(n—k)! 1-2-3---k

An alternative notation is C(n, k). This notation is particularly useful when you want to
express a binomial coefficient in the middle of text since it doesn’t take up two lines.

Note: Observe that in the last fraction, there are k factors in both the numerator and de-
nominator. Also, observe the boundary conditions

@)-0) - ©-62)=-r

Example 9.58. We have

6 _ 6~5-4:20’
3 1-2-3

1y _ 110 _

2) 1.2 77

12 12-11-10-9-8-7-6

<7 = 1234567 %

() -

*Exercise 9.59. Compute each of the following
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67
@ ()=
If there are n kittens and you decide to take k of them home, you also decided not to take
n — k of them home. This idea leads to the following important theorem.

Theorem 9.60. Ifn,k € Z, with 0 < k < n, then

ny n! B n! B n
k]  kKn—k)! (nh-knh-n-k)) \n—-k
Proof: Since k =n — (n — k), the result is obvious. O
11 11
(3)-(2)-
12 12
(3)-(2)
(110) _ (110) 110
109 1
*Exercise 9.62. Compute each of the following
17
@ (13) -
o () -
1
© ()=
200
@ (Gog) -
© (55) -

Example 9.61.

1
1

2
0
0

196
67
66

Definition 9.63. Let there be n distinguishable objects. A k-combination is a selection of
k, (0 <k < n) objects from the n made without regards to order.
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Example 9.64. The 2-combinations from the list {X,Y,Z, W} are
XY,XZ,XW,YZ,YW,WZ.

Notice that Y X (for instance) is not on the list because XY is already on the list and order
does not matter.

Example 9.65. The 3-combinations from the list {X,Y,Z, W} are

XYZ, XYW, XZW, YW Z.

xExercise 9.66. List the 2-combinations from the list {1, 2, 3,4, 5}

Answer

Theorem 9.67. Let there be n distinguishable objects, and let k, 0 < k < n. Then the
numbers of k-combinations of these n objects is Z

Proof:  The number of ways of picking k objects if the order matters is n(n —
1)(n—2)---(n—k+1) since there are n ways of choosing the first object, n — 1
ways of choosing the second object, etc.. Since each k-combination can be ordered
in k! ways, the number of ordered lists of size k is k! times the number of k-
combinations. Put another way, the number of k-combinations is the number
above divided by k!. That is, the total number of k-combinations is

n(n—1)(n—2)-(n—k+1) _ <n>

k! k

10
Example 9.68. From a group of 10 people, we may choose a committee of 4 in < 4 ) =210
ways.
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xEvaluate 9.69. A family has seven women and nine men. They need five of them to get
together to plan a party. If at least one of the five must be a woman, how many ways are
there to select the five?

Solution |1 Since one has t0 Be a8 woman, this is equivalent to selecting
four people from a pool of IS, so the answer is ().

Evaluation

Solution 2: There are 7T women to choose from to ensure there is one
woman, and then 4 more need to Be selected from the remaining IS. There
are () ways of doing that Therefore the total numeer of ways is () +7

Evaluation

Solution 3: There are (£) possisle committees, (2) of which contain only
men. Thus, there are (fé’) — (g) committees that contain at least one woman

Evaluation

Example 9.70. Consider the following grid:

A

To count the number of shortest routes from A to B (one of which is given), observe
that any shortest path must consist of 6 horizontal moves and 3 vertical ones for a total of
6 + 3 = 9 moves. Once we choose which 6 of these 9 moves are horizontal the 3 vertical ones
are determined. For instance, if I choose to go horizontal on moves 1, 2, 4, 6, 7, and 8, then
moves 3, 5 and 9 must be vertical. Since there are 9 moves, I just need to choose which 6 of
these are the horizontal moves. Thus there are (2) = 84 paths.

Another way to think about it is that we need to compute the number of permutations
of FEEEFEEENNN, where E means move east, and N means move north. The number of

permutations is 9!/(6! - 3!) = (g).
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xExercise 9.71. Count the number of shortest routes from A to B that pass through point

O in the following grid. (Hint: Break it into two subproblems and combine the solutions.)
B

@)

*Evaluate 9.72. A family has seven women and nine men. How many ways are there to
select five of them to plan a party if at least one man and one woman must be selected?

Solution | There are 7 choices for the first woman, 9 choices for the
first man, and (%) choices for the rest of the committee. Thus, there are

('g ) -1-9 possigle committees.

Evaluation

Solution 2: Since one has 10 Be 8 woman and one has to Be a man, then
they really just Need to select 3 more memper from the remaining I+

pecple, sO the answer is (%),

Evaluation

Now it’s your turn to give a correct solution to the previous problem.

*Exercise 9.73. A family has seven women and nine men. How many ways are there to
select five of them to plan a party if at least one man and one woman must be selected?
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*Question 9.74. In the answer to the previous problem, we pointed out that two sets of
committees did not overlap. Why was that important?

Answer

Example 9.75. Three different integers are drawn from the set {1,2,...,20}. In how many
ways may they be drawn so that their sum is divisible by 37

Solution: 1In {1,2,...,20} there are

6 numbers leaving remainder 0
7 numbers leaving remainder 1
7 numbers leaving remainder 2

The sum of three numbers will be divisible by 3 when (a) the three numbers are
divisible by 3; (b) one of the numbers is divisible by 3, one leaves remainder 1 and
the third leaves remainder 2 upon division by 3; (c) all three leave remainder 1
upon division by 3; (d) all three leave remainder 2 upon divi